REMARKS ONEFIMOV'STHEOREM ABOUT DIFFERENTIAL
TESTS OF HOMEOMORPHISM

V. A, ALEXANDROYV

In [1] N. V. Efimov has proved the following remarkable the-
‘orems

TagoreM 1. Let f: R® — R? be o C*-mapping, moreover for «ll
z € R2 the Jacobian det f'(xz) is negative. Let, in addition, be o positive func-
tion a = o {2)>0 and nor-negative constants Cy, C, so that for all z, y € R?
the inequality

1) La(e) —Lja(y)| < 0y lz —y| + C;
holds. Then if for all x € R? the inequality
() det f'(2)] > ala) [rot f(2)] + a¥w)

is valid, then f(IR2) is a convexr domain and f maps R? onto f(IR?) homeomor-
phically (Here vot f(x) denotes, as usual, the rotor of the mapping f on the
point & = {1y, @), t.e. 7ot f(x) = gfsfow; (x) — adfy/ das ().

TaHEOREM 2. Let the conditions of Theorem 1 be satisfied. If ine-
quality (2) holds with some constant ¢ = const > 0, in particular if

ldet f'(x)| > const > 0, |rot . f(x)| < const,

then f(IR?) is either the whole plane, or a half-plane, or an infinite band bel-
ween two parallel straight lines.

The proofs of these theorems are very difficult. They are based on
‘2 geometric technique developed by Efimov for a generalization of Hil-
bert’s theorem about the Iimpossibility of isometric immersion of the
Lobachevsky plane into R3 [2,3]. Evidently Efimov’s results were not
noticed by specialists in the theory of univalent functions, theorems on
global inverse function and quasiconformal mappings. In any case I do not
know any paper which deals with many-dimensional analog of Theorems
1,2 or which studies its nature from the functional — theoretical point of
view. The main aim of the present paper is to fill in these gaps if only
partially.

Efimov’s theerems were developed in the articles [4,5], investiga-
ting the question : which of the possibilities mentioned in Theorem 2
is really achieved ? For the linear map f,(z,, @) = @sy fo(@1, #,) = #; the
domain f ([R?) iy the whole plane. B. E. Xentor in [4] prooved that if

det f'() = const < 0, Tot f(a) = O,

then f(IR?) cannot be a band. He gives also an exemple of a mapping for
which the last conditions are valid and f(IR?) is a half-plane. 8. P. Geis-
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berg in [5] gives some generalizations of Kantor’s result showing that
f(IR?) cannot be a band if either

(@) rot f(x) = 0, det f'(z) = —g* ), where g is convex and non-
-vanishing ; or

(b) rot f(x) = 0 and det f'(x) is a polynomial
which takes only negative vaules.

The main result of the present paper is the followlng theorem, which.

asserts that f(IR?) = [R? and f is a diffeomorphism under conditions simi-

lar to the ones of Efimov’s, Kantor’s and Geisberg’s theorems.

TueorREM 3. Let f:[R2 — [R? be a C*-mapping, here for all x € R?
det f'(x) # 0. Let in addition be a monotone function L: [0, 4 co) —
— (0, +oo) such that

+ 00
3) S Ltydt =
and for all x € [R? the inequalities
4 ~ ldet f'(z)| > L(la]) Irot fla)] + L2 (la]),
(5) tr f'(2)] < L(|=])-

held. Then f is a diffeomorphism of IR? onto itself (Here tr f'(x) denotes as:
usual the trace of the mapping f'(x), i.e. tr f(x) = ofi/ dv1(w) + ofa/ 0%())..
Remark 1. It is assumed det f'(z) > 0 in Theorem 3.
Remark 2. 1f a mapping f satisfies the conditions of Theorem 1 then
there exists a function Lfor which relations (3) (4) hold (One can take:
L of the form

L(t) = (Cyt + 0, 4 1/a(0,0))-H).

Remark 3. Inequality (5) is additional with respect to the conditions.
of Theorem 1. In that sense it is similar to the additional conditions of
Kantor’s and Geisberg's theorem mentioned above, the most important
of which is rot f = 0.

The following lemma will permit us to deduce Theorem 3 from the
Hadamard-Levy-John'’s global inverse function theorem [6].

Lenwa.  Let the conditions of Theorem 3 be fulfilled. Then for all
z € [R? the norm of the linear map (fod)' (x)~*, which is inverse to (foJ) (),
satisfy the inequality

I(fed) (#)-1] =sup |(foJ) (2)-'y | < V6/L(]z]).
lyl =1
(Here J : IR2 — IR? is the linear map given by the matriz

(4

at the canonical basis in R2).
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Proof of the Lemma. Let ¥ = f-.J, L. = L (). Then the inequality

{4) is equivalent to

(6) |det F'(x)| = L Itr ¥ (x)| + L.

Let us denote the eigenvalues of the lirear map F” (#) by m,; m, and
:assume that [m,| < |m,|. Then (6) is equivalent to

| ' 2
mymy| > L fmy 4+ me| + L2

Hence |m,;| > L, and the spectral radius of F'(x)-! is no greater than
1/imy| < 1/1.

According to Schur’s theorem [7] let us choose an orthonormal
basis in €2 so that matrix ¥’ (z)-! is triangular. Then its diagonal ele-
ments coincide with eigenvalues of F'(x)-'. But we have estimated its
absolute values. Therefore we must estimate only the unique DON-ZeTo
element » standing outside the diagonal. Direct calculation using ine-
quality (5) but not (4) gives |n| < 2/L. Hence

1" (2) 1 < (U lmy |2 + 1 o2+ [n[2)2 < [6/L, Q.E.D.

Let us remind the Hadamard-Levy-John’s global inverse function
theorem [6]. ‘

THEOREM 4. Let B, b be Banach spaces, J:B = b a continuously
differentiable map and M : [0, 4-c0) — (0, o) g non-decreasing function
such that the following conditions hold

1) for all X € B the linear map f/(X) has continuous inverse one;

2) for all X € B the morm [[f'(X)-1] of f(X)-! s less or equal fo
M(|X l);L o

3) @
M(t)

Then f i3 a diffeomorphism onio b.

Proof of Theorem 3. For all z € [R2 we have by lemma

[(fod) (@)= < V6/L (lz]).

Hence if we define a function M by equality

M(t) = V6/L(t), 0 <t < -+ oo,

‘then the conditions of Theorem 4 is fulfild for the map foJ and function
M. Therefore Sod is a diffeomorphism. Q.E.D.

Now let us discuss some perspectives of furfher investigations con-
nected with Efimov’s theorems, which arise from our proof of Theorem
3. First of all we have seen that the enigmatic conditions (1), (2) of The-
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orem 1 imply a restriction on a growth of the spectral radius of the map-
ping f(x2)-! as & — oo. Is it true that the last restriction (and not only
(1), (2)) already imply the injectivity of 2 This question induces an ana-
logy between the Efimov’s theorems and the _Hadar_na}“d—Leyy-,}"ohnvs
global inverse function theorem where the restriction is imposed on the
growth of a norm of the mapping f* ( x)~tas ¢ — oolnstead of its spectral
radius. In this connection one can hope for obtaining many-dimensional
analogs c¢f BEfimov’s theorems.

For a better understanding I am formulating a simpler theorem
which must be proved in the way under discussion.

Hypothetical theorem. Let n» > 2 and f:R" —[R* be a continu-
ously differentiable map. Denote by my = my(@), M, = me(x),. ..,
My = My, (2) eigenvalues of the linear map f(x) ordered with respect to
absolute values |m;| < |my] < ... < Mgl If there exists a constant
K such that for all e [R» the inequalities

1K < my(e)) < [ma(0)} < K

holds, then f (IR®) is a convex domain and f is injective.
Remark 4. If n =2 and det f'(z) < 0, then the hypothetizal theo-
rem easily follows from Theorem 2. In fact under above assumnptions
det (fo) () <0,
[det (fod) (2)] = |mn - my| 2K -*= const.>0,
[rot (fod) (a)| = Itxf’ (Jx)| = imy + m: | 2K = const. < co,

where
J = ( 0 1) .
-1 0.

Later on it is clear that one can develop investigations on Efimov's
theorems by analegy with the theory of quasiconformel and quasi-iso-
metric mappings. One can consider here a class 4 of the mappings, dea-
ling with our hypothetical theorem, as an analogyv of the K-quasi-isome-
tric mappings class [8]. It is naturally to consider a class B of maps defi-
ned by the inequality |m,(x)jm(2)| <K as an analogy for the class of
K-quasiconformal maps. Is there an analogy for Zoric’s theorem on glo-
bal homeomorphism of quasiconformal maps for one of the classes 4 and
B [9, 10]? Similarly, is there an analogy for the theorem on radius of
injectivity [10] and stability of quasi-isometric and guasiconformal maps
{11, 1272 Let us point out two circumstances that complicate the proof
of analogies under consideration. Firstly, neither clasg 4 nor B is closed.
with respect to composition. Secondly, maps from clagses 4 and B have
not avy unique metric property because one can determine eigenvalues
independently on a norm in [Re Similar difficulties are overcome in
proofs of ‘the Gale-Nikaido-Inada’s and Parthasarathy’s global univa-
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lence theorems [13]. However our statements of the question differ
essentially from the last theorems because classes .4 and B were defined
independently on the choice of a coordinate system in [R".
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