Steklov zeta-invariants and a compactness theorem for isospectral families of planar domains

Alexandre Jollivet, Vladimir Sharafutdinov

A Laboratoire de Mathématiques Paul Painlevé, CNRS UMR 8524/Université Lille 1 Sciences et Technologies, 59655 Villeneuve d’Ascq Cedex, France
b Sobolev Institute of Mathematics, 4 Koptyug Avenue, Novosibirsk, 630090, Russia
c Novosibirsk State University, 2 Pirogov street, Novosibirsk, 630090, Russia

A R T I C L E I N F O

Article history:
Received 6 October 2017
Accepted 25 June 2018
Available online xxxx
Communicated by E. Milman

MSC:
primary 35R30
secondary 35P99

Keywords:
Steklov spectrum
Dirichlet-to-Neumann operator
Zeta function
Inverse spectral problem

A B S T R A C T

The inverse problem of recovering a smooth simply connected multisheet planar domain from its Steklov spectrum is equivalent to the problem of determination, up to a gauge transform, of a smooth positive function a on the unit circle from the spectrum of the operator $a\Lambda$, where Λ is the Dirichlet-to-Neumann operator of the unit disk. Zeta-invariants are defined by $Z_m(a) = \text{Tr}[(a\Lambda)^{2m} - (aD)^{2m}]$ for every smooth function a. In the case of a positive a, zeta-invariants are determined by the Steklov spectrum. We obtain some estimate from below for $Z_m(a)$ in the case of a real function a. On using the estimate, we prove the compactness of a Steklov isospectral family of planar domains in the

https://doi.org/10.1016/j.jfa.2018.06.019
0022-1236/© 2018 Elsevier Inc. All rights reserved.

Please cite this article in press as: A. Jollivet, V. Sharafutdinov, Steklov zeta-invariants and a compactness theorem for isospectral families of planar domains, J. Funct. Anal. (2018), https://doi.org/10.1016/j.jfa.2018.06.019
1. Introduction

Let \(\Omega \) be a simply connected planar domain bounded by a \(C^\infty \)-smooth closed curve \(\partial \Omega \). The Dirichlet-to-Neumann operator of the domain

\[
\Lambda_\Omega : C^\infty(\partial \Omega) \to C^\infty(\partial \Omega)
\]

is defined by \(\Lambda_{\Omega} f = \frac{\partial u}{\partial \nu} |_{\partial \Omega} \), where \(\nu \) is the outward unit normal to \(\partial \Omega \) and \(u \) is the solution to the Dirichlet problem

\[
\Delta u = 0 \quad \text{in} \quad \Omega, \quad u|_{\partial \Omega} = f.
\]

The Dirichlet-to-Neumann operator is a first order pseudodifferential operator. Moreover, it is a non-negative self-adjoint operator with respect to the \(L^2 \)-product

\[
\langle u, v \rangle = \int_{\partial \Omega} u\bar{v} \, ds,
\]

where \(ds \) is the Euclidean arc length of the curve \(\partial \Omega \). In particular, the operator \(\Lambda_\Omega \) has a non-negative discrete eigenvalue spectrum

\[
\text{Sp}(\Omega) = \{ 0 = \lambda_0(\Omega) < \lambda_1(\Omega) \leq \lambda_2(\Omega) \leq \ldots \},
\]

where each eigenvalue is repeated according to its multiplicity. The spectrum is called the Steklov spectrum of the domain \(\Omega \). In particular, for the unit disk \(D = \{ (x, y) \mid x^2 + y^2 \leq 1 \} \),

\[
\text{Sp}(D) = \{ 0 = \lambda_0^0 < \lambda_1^0 \leq \lambda_2^0 \leq \ldots \} = \{ 0, 1, 1, 2, 2, \ldots \}.
\]

Let \(S = \partial D = \{ e^{i\theta} \} \subset \mathbb{C} \) be the unit circle. The Dirichlet-to-Neumann operator of the unit disk will be denoted by \(\Lambda : C^\infty(S) \to C^\infty(S) \), i.e., \(\Lambda = \Lambda_D \) (this operator was denoted by \(\Lambda_e \) in [5] and [9]). Given a positive function \(a \in C^\infty(S) \), the operator \(a\Lambda \) has the non-negative discrete eigenvalue spectrum

\[
\text{Sp}(a) = \{ 0 = \lambda_0(a) < \lambda_1(a) \leq \lambda_2(a) \leq \ldots \}
\]

which is called the Steklov spectrum of the function \(a \) (or of the operator \(a\Lambda \)).
Two kinds of the Steklov spectrum are related as follows. Given a smooth simply connected planar domain Ω, choose a biholomorphism $\Phi : \mathbb{D} \rightarrow \Omega$ and define the function $0 < a \in C^\infty(\mathbb{S})$ by $a(z) = |\Phi'(z)|^{-1} (z \in \mathbb{S})$. Let $\phi : \mathbb{S} \rightarrow \partial \Omega$ be the restriction of Φ to \mathbb{S}. Then $a\Lambda = \phi^*\Lambda_{\Omega} \phi^{-1}$ and $\text{Sp}(a) = \text{Sp}(\Omega)$. See [5, Section 3] for details.

Not all smooth positive functions a on the circle can be expressed as $a(z) = |\Phi'(z)|^{-1} (z \in \mathbb{S})$ for a biholomorphism Φ from \mathbb{D} onto a simply connected planar domain Ω with smooth boundary. However any smooth positive functions a on the circle can be expressed as $a(z) = |\Phi'(z)|^{-1} (z \in \mathbb{S})$ for $\Phi \in \mathcal{F}$ where \mathcal{F} is the set of all smooth functions f on \mathbb{D} which are holomorphic in the interior of \mathbb{D} and such that the derivative f' does not vanish in \mathbb{D}. For this purpose we enlarge the class of planar domains by allowing simply connected multisheet planar domains “with smooth boundary” which are the equivalence classes in \mathcal{F} under the following equivalence relation: Two functions $f, g \in \mathcal{F}$ are said to be equivalent if there exists a biholomorphism $\Psi : \mathbb{D} \rightarrow \mathbb{D}$ such that $g = f \circ \Psi$. An alternative definition is presented in [5]. A typical example of such a domain is shown in Fig. 1.

A biholomorphism Φ from \mathbb{D} to the simply connected multisheet planar domain Ω is one representative of the class Ω ($\Phi \in \mathcal{F}$). And we call Steklov spectrum of Ω the Steklov spectrum $\text{Sp}(a)$ where $a(z) = |\Phi'(z)|^{-1} (z \in \mathbb{S})$.

The biholomorphism Φ of the previous paragraph is defined up to a conformal transformation of the disk \mathbb{D}, this provides examples of functions with the same Steklov spectrum (see [5]). Two functions $a, b \in C^\infty(\mathbb{S})$ are said to be conformally equivalent, if there exists a conformal or anticonformal transformation Ψ of the disk \mathbb{D} such that

$$b = \left| \frac{d\Psi}{d\theta} \right|^{-1} a \circ \Psi, \quad (1.1)$$

where the function $\psi(\theta)$ is defined by $e^{i\psi(\theta)} = \Psi(e^{i\theta})$ (Ψ is anticonformal if $\overline{\Psi}$ is conformal). If two positive functions $a, b \in C^\infty(\mathbb{S})$ are conformally equivalent, then $\text{Sp}(a) = \text{Sp}(b)$.

For example, take $a(z) = 5^{-1}e^{-5Rz} (z \in \mathbb{S})$. For any $\Phi \in \mathcal{F}$, the identity $a(z) = |\Phi'(z)|^{-1} (z \in \mathbb{S})$ is valid if and only if there exists $(\alpha, \alpha) \in C^2, |\alpha| = 1$, so that $\Phi(z) = \alpha e^{5z} + c, z \in \mathbb{D}$.

Please cite this article in press as: A. Jollivet, V. Sharafutdinov, Steklov zeta-invariants and a compactness theorem for isospectral families of planar domains, J. Funct. Anal. (2018), https://doi.org/10.1016/j.jfa.2018.06.019
Let \(D = -i \frac{d}{d\theta} : C^\infty(S) \to C^\infty(S) \) be the differentiation with respect to the angle variable. Steklov zeta-invariants \(Z_m(a) \) (\(m = 1, 2, \ldots \)) of a function \(a \in C^\infty(S) \) are defined by

\[
Z_m(a) = \text{Tr}[(a\Lambda)^{2m} - (aD)^{2m}].
\]

(1.2)

The expression in brackets is a smoothing operator on \(S \), this fact will be proved below. Remind that every smoothing pseudodifferential operator on a compact manifold has a finite trace. We emphasize that zeta-invariants are well defined for an arbitrary (complex-valued) function \(a \in C^\infty(S) \) although the spectrum of \(a\Lambda \) can be not discrete in the general case. Zeta-invariants are real for a real function \(a \), we will mostly study this case. For a positive function \(a \in C^\infty(S) \), zeta-invariants are uniquely determined by the Steklov spectrum \(\text{Sp}(a) \). This fact was proved by J. Edward [2] (without using the term “zeta-invariants”), see also [9].

For a function \(u \) on the circle \(S = \{ e^{i\theta} \mid \theta \in \mathbb{R} \} \), we write \(u(\theta) \) instead of \(u(e^{i\theta}) \). Fourier coefficients of \(u \in C^\infty(S) \) are denoted by \(\hat{u}_n \), i.e., \(u(\theta) = \sum_{n \in \mathbb{Z}} \hat{u}_n e^{in\theta} \). Edward [2] obtained the formula

\[
Z_1(a) = \frac{2}{3} \sum_{n=2}^{\infty} n(n^3 - n^2) |\hat{a}_n|^2
\]

(1.3)

for a real function \(a \in C^\infty(S) \). E. Malkovich and V. Sharafutdinov [9] generalized the formula to all zeta-invariants: \(Z_m(a) \) is expressed by some \(2m \)-form in Fourier coefficients \(\hat{a}_n \). Unfortunately, the latter formula is too complicated to be useful for deriving theoretical results. On the other hand, Malkovich–Sharafutdinov’s formula is very easy for computerization. Thus, unlike the hard problem of calculating Steklov eigenvalues, zeta-invariants can be easily computed.

The main result of the present paper is the following

Theorem 1.1. *Given an integer \(m \geq 1 \) and a real function \(a \in C^\infty(S) \), set \(b = a^m \). The estimate*

\[
Z_m(a) \geq c_m \sum_{n=m+1}^{\infty} n^{2m+1} |\hat{b}_n|^2
\]

(1.4)

holds with some positive constant \(c_m \) independent of \(a \). In particular, \(Z_m(a) \geq 0 \) for every integer \(m \geq 1 \) and for every real function \(a \in C^\infty(S) \).

For \(m = 1 \), estimate (1.4) follows from Edward’s formula (1.3). Theorem 1.1 was first conjectured as a result of a lot of numerical experiments based on Malkovich–Sharafutdinov’s formula, we are grateful to E. Malkovich for his help with computer calculations. For a positive function \(a \), the statement \(Z_m(a) \geq 0 \) follows from a more general inequality proved by the authors [6].
The question of describing the null space of a zeta-invariant was posed in [9]. The question is closely related to the above-defined conformal equivalence of functions. The following theorem gives the full answer to the question for real functions.

Theorem 1.2. For every integer \(m \geq 1 \) and for every real function \(a \in C^\infty(S) \), \(Z_m(a) = 0 \) if and only if the function \(a \) is of the form

\[
a(\theta) = \hat{a}_0 + 2\Re(\hat{a}_1 e^{i\theta}) \quad \text{with some } \hat{a}_0 \in \mathbb{R} \text{ and } \hat{a}_1 \in \mathbb{C}.
\]

Observe that (1.5) holds if and only if \(a \) is conformally equivalent to a constant function. The latter fact is not used in our proof. Again, the statement of the theorem follows from Edward’s formula (1.3) in the case of \(m = 1 \). The “if” statement of Theorem 1.2 is proved in [9, Section 6]. Moreover, the following more general statement is proved there. For every integer \(m \geq 1 \), \(Z_m(a) = 0 \) if \(a \in C^\infty(S) \) is a (complex-valued) function satisfying \(\hat{a}_n = 0 \) for \(|n| > 1 \). Our proof is independent of the latter statement.

The inverse problem of recovering a function \(0 < a \in C^\infty(S) \) from the Steklov spectrum \(\text{Sp}(a) \) seems to be very difficult. It makes sense to start with easier questions of the following kind. Given \(0 < a \in C^\infty(S) \), set

\[
\mathcal{A} = \{ 0 < \tilde{a} \in C^\infty(S) \mid \tilde{a} \text{ is conformally equivalent to } a \}.
\]

How far off \(\mathcal{A} \) can be a function \(0 < b \in C^\infty(S) \) satisfying \(\text{Sp}(b) = \text{Sp}(a) \)? In this direction, we prove the following compactness theorem.

Theorem 1.3. Let \(a_n \in C^\infty(S) \) \((n = 1, 2, \ldots)\) be a sequence of positive functions such that the Steklov spectrum \(\text{Sp}(a_n) \) is independent of \(n \). There exists a subsequence \(a_{n_k} \) \((k = 1, 2, \ldots)\) such that every \(a_{n_k} \) is conformally equivalent to some \(b_k \in C^\infty(S) \) and the sequence \(b_k \) \((k = 1, 2, \ldots)\) converges to a positive function \(b \in C^\infty(S) \) in the \(C^\infty \)-topology, i.e., \(D^\ell b_k \rightarrow D^\ell b \) as \(k \rightarrow \infty \) uniformly on \(S \) for every \(\ell \in \mathbb{N} \).

The theorem gives the positive answer to Edward’s question [3] who has proved the corresponding pre-compactness theorem in the Sobolev \(H^s \)-topology for \(s < 5/2 \). In his proof, Edward uses first two zeta-invariants and the values \(\zeta_\omega(-1), \zeta_\omega(-3) \) of the zeta function. Our proof follows the same line with using estimate (1.4) for all zeta-invariants.

In Section 5 we provide an interpretation of Theorem 1.3 in terms of a Steklov isospectral family of planar domains (see Theorem 5.4).

In the framework of the famous Kac’s question [7] where one asks whether a simply connected planar domain \(\Omega \) with smooth boundary can be recovered from the spectrum of the (positive) Laplacian \(\Delta_\Omega \) with the homogeneous Dirichlet boundary condition, compactness of isospectral family of planar domains was proved in [11, Section 1] and generalized to a family of multiply connected planar domains in [12]. Theorems 1.3 and 5.4 provide the analogs of [11, Section 1] when one considers the question of recovering a planar domain \(\Omega \) from the spectrum of its Dirichlet-to-Neumann operator.
A_Ω instead. One may also compare the strategy of proof of [11, Section 1] and that of Theorems 1.3 and 5.4. Both proofs rely on controlling Sobolev norms of the function \(\ln(a) \) related to \(\Omega \) as above with respect to spectral invariants under an additional “balance” condition on \(a \) always satisfied by a well chosen representative of \(\Omega \). In [11] the balance condition is \((\alpha-1)_1 = 0\), and the spectral invariants are the heat invariants and the regularized determinant of the Laplacian. We recall that the heat invariants are the coefficients of the asymptotic expansion of \(\text{Tr}(e^{-t\Delta_\Omega}) \) as \(t \to 0^+ \). In our work the balance condition is \(\tilde{a}_1 = 0 \) (see [3, Proposition 1] or Lemma 5.1), and the spectral invariants are the asymptotics of the Steklov eigenvalues (that determines the perimeter of \(\Omega \)) and specific values of the Steklov spectral zeta function \(\zeta_\alpha \): The value \(\zeta_\alpha(-1) \) and the zeta-invariants which are the values of \(\zeta_\alpha \) at negative even integers. In [11] the Sobolev norm of order \(\frac{1}{2} \) of \(\ln(a) \) is controlled using the first order heat invariant (which determines the perimeter of \(\Omega \)) and the regularized determinant of the Laplacian \(\Delta_\Omega \). Then an argument in [10] allows to control higher Sobolev norms of \(\ln(a) \) by using higher order heat invariants, which concludes the proof. In our work, \(\zeta_\alpha(-1) \) and the first zeta-invariant allow to control a lower Sobolev norm of \(\ln(a) \). This was already done in [3, Section 3]. Then our main result, Theorem 1.1, was the missing ingredient and plays an analog role of [10], and it allows to control higher Sobolev norms of \(\ln(a) \).

The following important fact was discovered by several authors independently [2,8, 13]. Let \(\Omega \) and \(\Omega' \) be two smooth simply connected planar domains with coincident perimeters. Identify the boundary curves by a map \(\varphi : \partial \Omega \to \partial \Omega' \) preserving the arc length. Then the operators \(\Lambda_\Omega \) and \(\varphi^*\Lambda_{\Omega'}\varphi^{*-1} \) have coincident full symbols, i.e., \(\Lambda_\Omega - \varphi^*\Lambda_{\Omega'}\varphi^{*-1} \) is a smoothing operator. In the scope of the inverse problem of recovering a function \(0 < a \in C^\infty(S) \) from the Steklov spectrum \(\text{Sp}(a) \), this fact can be interpreted as follows. Besides the integral \(\int_\gamma a^{-1}(\theta) \, d\theta \), no information on \(a \) can be extracted from the full symbol of the operator \(a\Lambda \). In other words: all the data on the inverse problem is contained in the smoothing part of the operator \(a\Lambda \). This justifies our interest to the study of smoothing pseudodifferential operators on the circle in Section 2.

As well known [4], heat invariant of an elliptic operator \(A \) are completely determined by the full symbol of \(A \). This means, in particular, that heat invariants are useless in our inverse problem.

The situation is more difficult but somewhat similar in higher dimensions. For example, the inverse problem of recovering a Riemannian metric \(g \) on a compact manifold \(M \) with boundary from the Dirichlet-to-Neumann operator \(\Lambda_g \) is considered in [8] (it is called the anisotropic electrical impedance tomography problem). In dimensions \(\geq 3 \), the boundary \(C^\infty \)-jet of the metric can be recovered from the full symbol of the operator \(\Lambda_g \) and vice versa: the full symbol of \(\Lambda_g \) is uniquely determined by the boundary \(C^\infty \)-jet of the metric. In other words: all the data on the inner structure of the Riemannian manifold is contained in the smoothing part of the operator \(\Lambda_g \). Again, heat invariants are useless here.

The paper is organized as follows.
Let $\Psi(S)$ be the algebra of all pseudodifferential operators on S considered as an algebra over \mathbb{C}. In Section 2, we consider the subalgebra $\mathbb{C}[L, H]$ of $\Psi(S)$ generated by the Hilbert transform H and a general self-adjoint operator $L \in \Psi(S)$ that commutes with H up to a smoothing operator. We prove a number of statements on traces of some smoothing operators belonging to $\mathbb{C}[L, H]$. Theorems 1.1 and 1.2 are the most important examples of such statements. Indeed, definition (1.2) can be written in terms of the operator $L = \Lambda^{1/2}a\Lambda^{1/2}$ (we denote the operator of multiplication by a function a by the same letter a) as

$$Z_m(a) = \text{Tr}[L^{2m} - (LH)^{2m}].$$

(1.7)

The commutator $[L, H]$ is a smoothing operator. We refer the reader to the beginning of Section 3 for the derivation of identity (1.7).

Proofs of Theorems 1.1 and 1.2 are presented in Sections 3 and 4 respectively. Section 5 contains the proof of Theorem 1.3 and the interpretation of the theorem in terms of a Steklov isospectral family of planar domains.

The proof of Theorem 1.3 is independent of Theorem 1.2. If a reader is not interested in Theorem 1.2, he/she does not need to read Theorem 2.5 and the rest of Section 2 as well as Section 4. The proof of Lemma 2.2 is presented in Appendix. If a reader either knows a better proof of the equality $\text{Tr}[AB - C] = \text{Tr}[BA - C]$ in the setting of Lemma 2.2 or believes that the equality is always true, he/she does not need to look into Appendix.

2. Algebra $\mathbb{C}[L, H]$

Let $S = \{e^{i\theta} \mid \theta \in \mathbb{R}\}$ be the unit circle. For a function $u \in C(S)$, we write $u(\theta)$ instead of $u(e^{i\theta})$. The L^2-product is denoted by

$$\langle u, v \rangle = \frac{1}{2\pi} \int_0^{2\pi} u(\theta)\overline{v}(\theta) \, d\theta$$

and the corresponding norm is $\| \cdot \|$. The factor $(2\pi)^{-1}$ is included to make $\{e^{in\theta}\}_{n \in \mathbb{Z}}$ the orthonormal basis of $L^2(S)$.

We define the Hilbert transform $H : C^\infty(S) \rightarrow C^\infty(S)$ by

$$He^{in\theta} = \begin{cases} e^{in\theta} & \text{if } n \geq 0, \\ -e^{in\theta} & \text{if } n < 0. \end{cases}$$

(2.1)
Our definition is slightly different of the standard one: $He^{i\theta} = 0$ for $n = 0$ according to the standard definition. Observe that H is a zero order pseudodifferential operator. Additionally, it is a unitary operator on $L^2(S)$ satisfying $H^2 = I$.

Let $\Psi(S)$ be the algebra of all pseudodifferential operators on S considered as an algebra over \mathbb{C}. We fix an operator $L \in \Psi(S)$ and consider the subalgebra $\mathbb{C}[L, H]$ of $\Psi(S)$ generated by L and H. From the algebraic viewpoint, $\mathbb{C}[L, H]$ is the algebra of polynomials in two variables (L, H). Every monomial of the algebra $\mathbb{C}[L, H]$ can be written in the form λA ($\lambda \in \mathbb{C}$), where

$$A = L^{j_1}H \ldots L^{j_s}H \quad (0 \leq j_\alpha \in \mathbb{N} \text{ for } \alpha = 1, \ldots, s).$$

The sum $j_1 + \cdots + j_s$ is called the degree of the monomial in L while s is the degree of the monomial in H.

Assume now that the commutator $[L, H]$ is a smoothing operator. Then we can commute, up to a smoothing operator, factors of product (2.2). In this way (2.2) can be reduced, up to a smoothing operator, either to $L^{j_1+\cdots+j_s}$ (if the degree of A in H is even) or to $L^{j_1+\cdots+j_s}H$ (if the degree of A in H is odd). In particular, the following statement is valid.

Lemma 2.1. If two products A_1 and A_2 of form (2.2) are of the same degree in L and their degrees in H are of the same evenness, then the difference $A_1 - A_2$ is a smoothing and hence finite trace operator.

An integer $m \geq 1$ will be fixed till the end of the current section. The dependence of different quantities on m will not be designated explicitly. The proof of the following lemma is presented in Appendix.

Lemma 2.2. Let L be a self-adjoint pseudodifferential operator on S such that the commutator $[L, H]$ is a smoothing operator. Let A_1 and A_2 be two products of form (2.2) whose degrees in H are of the same evenness. Assume that $m_1 + m_2 = 2m$, where m_i is the degree of A_i in L ($i = 1, 2$). Then

$$\text{Tr} [A_1A_2 - (LH)^{2m}] = \text{Tr} [A_2A_1 - (LH)^{2m}].$$

(2.3)

Let us mention two partial cases of (2.3). For $A_1 = H$ and $A_2 = L^{2m}H$, (2.3) gives

$$\text{Tr} [HL^{2m}H - (LH)^{2m}] = \text{Tr} [L^{2m} - (LH)^{2m}].$$

(2.4)

For $A_1 = H$ and $A_2 = H \prod_{\ell=1}^{2s} (L^{j_\ell}H)$ with $j_1 + \cdots + j_{2s} = 2m$, (2.3) gives

$$\text{Tr} \left[\prod_{\ell=1}^{2s} (L^{j_\ell}H) - (LH)^{2m} \right] = \text{Tr} \left[\prod_{\ell=1}^{2s} (HL^{j_\ell}) - (LH)^{2m} \right].$$

Please cite this article in press as: A. Jollivet, V. Sharafutdinov, Steklov zeta-invariants and a compactness theorem for isospectral families of planar domains, J. Funct. Anal. (2018), https://doi.org/10.1016/j.jfa.2018.06.019
For every $\ell \in \mathbb{N}$ satisfying $1 \leq \ell \leq m$, let Δ_ℓ be the set of sequences $\delta = (\delta_1, \ldots, \delta_\ell)$ of integers satisfying $1 \leq \delta_i \leq m$ ($1 \leq i \leq \ell$) and $\delta_1 + \cdots + \delta_\ell = m$.

Let L be a self-adjoint pseudodifferential operator on \mathbb{S} such that the commutator $[L, H]$ is a smoothing operator. For $\delta = (\delta_1, \ldots, \delta_\ell) \in \Delta_\ell$, we set

$$G_\delta = (L^{\delta_1}H)(L^{\delta_2}H) \cdots (L^{\delta_\ell}H).$$

(2.5)

The trace $\text{Tr} [G_\delta^* G_\delta - (LH)^{2m}]$ is real. Indeed, on using the trigonometric basis, we have

$$\text{Tr} [G_\delta^* G_\delta - (LH)^{2m}] = \sum_{n \in \mathbb{Z}} \left(\langle G_\delta^* G_\delta e^{i_n}, e^{i_n} \rangle - \langle (LH)^{2m} e^{i_n}, e^{i_n} \rangle \right).$$

All summands of the series are real. Indeed, since $H e^{i_n} = \pm e^{i_n}$,

$$\langle G_\delta^* G_\delta e^{i_n}, e^{i_n} \rangle - \langle (LH)^{2m} e^{i_n}, e^{i_n} \rangle = \|G_\delta e^{i_n}\|^2 - \langle (LH)^{2m-1} H e^{i_n}, e^{i_n} \rangle$$

$$= \|G_\delta e^{i_n}\|^2 \mp \langle (LH)^{2m-1} L e^{i_n}, e^{i_n} \rangle.$$

The right-hand side is real because $(LH)^{2m-1} L$ is a self-adjoint operator. Observe also that

$$\text{Tr} [G_\delta^* G_\delta - (LH)^{2m}] = \text{Tr} [G_\delta^* G_\delta - (LH)^{2m}]$$

by Lemma 2.2.

Define the function $\varphi : \{1, \ldots, m\} \to \mathbb{R}$ by

$$\varphi(\ell) = \max_{\delta \in \Delta_\ell} \text{Tr} [G_\delta^* G_\delta - (LH)^{2m}] \quad (1 \leq \ell \leq m).$$

(2.6)

Define $\omega_\ell \in \Delta_\ell$ ($1 \leq \ell \leq m$) by

$$\omega_\ell = (m - \ell + 1, 1, \ldots, 1).$$

(2.7)

In particular, $\omega_1 = (m)$ and $\omega_m = (1, \ldots, 1)$.

Obviously, $G_{\omega_1} = L^m H$ and

$$\varphi(1) = \text{Tr} [G_{\omega_1}^* G_{\omega_1} - (LH)^{2m}] = \text{Tr} [HL^{2m} H - (LH)^{2m}].$$

With the help of (2.4), this gives $\varphi(1) = \text{Tr} [L^{2m} - (LH)^{2m}]$.

Obviously,

$$G_{\omega_m} = (LH)^m$$

(2.8)
and

\[\varphi(m) = \text{Tr} \left[G_{\omega_m}^* G_{\omega_m} - (LH)^{2m} \right] = \text{Tr} \left[(HL)^m (LH)^m - (LH)^{2m} \right] = \text{Tr} \left[H(LH)^{m-1} L^2 H(LH)^{m-1} - (LH)^{2m} \right].\]

(2.9)

Theorem 2.3. Let \(L\) be a self-adjoint pseudodifferential operator on \(\mathbb{S}\) such that the commutator \([L, H]\) is a smoothing operator and let the function \(\varphi\) be defined by (2.6). Then \(\varphi\) is a non-increasing and non-negative function. In particular,

\[\text{Tr} \left[L^{2m} - (LH)^{2m} \right] = \varphi(1) \geq \varphi(m) = \text{Tr} \left[H(LH)^{m-1} L^2 H(LH)^{m-1} - (LH)^{2m} \right] \geq 0.\]

(2.10)

To prove the theorem, we need the following

Lemma 2.4. Let \(A, B,\) and \(C\) be pseudodifferential operators on \(\mathbb{S}\) such that \(C\) is self-adjoint and \(AA^* - CH, B^*B - CH,\) and \(AB - CH\) are finite trace operators. Then

\[\Re(\text{Tr}[AB - CH]) \leq \frac{1}{2} \text{Tr}[AA^* - CH] + \frac{1}{2} \text{Tr}[B^*B - CH].\]

(2.11)

The equality on (2.11) holds if and only if \(A^* = B.\)

Proof. For \(n \in \mathbb{Z},\)

\[\langle (AB - CH)e^{in\theta}, e^{in\theta} \rangle = \langle Be^{in\theta}, A^*e^{in\theta} \rangle - \langle CHe^{in\theta}, e^{in\theta} \rangle.\]

By the Schwarz inequality,

\[\Re(\langle Be^{in\theta}, A^*e^{in\theta} \rangle) \leq \|Be^{in\theta}\| \|A^*e^{in\theta}\| \leq \frac{1}{2} \|A^*e^{in\theta}\|^2 + \frac{1}{2} \|Be^{in\theta}\|^2.\]

(2.12)

Taking into account that \(\langle CHe^{in\theta}, e^{in\theta} \rangle = \pm \langle Ce^{in\theta}, e^{in\theta} \rangle\) is real, we derive from two last formulas

\[\Re(\langle (AB - CH)e^{in\theta}, e^{in\theta} \rangle) \leq \frac{1}{2} (\|A^*e^{in\theta}\|^2 - \langle CHe^{in\theta}, e^{in\theta} \rangle) + \frac{1}{2} (\|Be^{in\theta}\|^2 - \langle CHe^{in\theta}, e^{in\theta} \rangle)\]

\[= \frac{1}{2} \langle (AA^* - CH)e^{in\theta}, e^{in\theta} \rangle + \frac{1}{2} \langle (B^*B - CH)e^{in\theta}, e^{in\theta} \rangle.\]

Summing these inequalities over \(n \in \mathbb{Z},\) we arrive to (2.11).

Equality in (2.11) holds if and only if both inequalities on (2.12) become equalities for every \(n \in \mathbb{Z},\) i.e., if and only if \(A^*e^{in\theta} = Be^{in\theta}\) for any \(n \in \mathbb{Z}.\) Hence equality in (2.11) holds if and only if \(A^* = B.\) \(\square\)
Proof of Theorem 2.3. We prove that \(\varphi(m) \geq 0 \). By (2.9),

\[
\varphi(m) = \text{Tr} \left[G_{\omega_m}^* G_{\omega_m} - (LH)^{2m} \right] = \sum_{n \in \mathbb{Z}} \left(\| G_{\omega_m} e^{in\theta} \|^2 - \langle (LH)^{2m} e^{in\theta}, e^{in\theta} \rangle \right). \tag{2.13}
\]

For every \(n \in \mathbb{Z} \), we obtain with the help of (2.8)

\[
\langle (LH)^{2m} e^{in\theta}, e^{in\theta} \rangle = \langle G_{\omega_m}^* e^{in\theta}, e^{in\theta} \rangle = \langle G_{\omega_m} e^{in\theta}, G_{\omega_m}^* e^{in\theta} \rangle.
\]

As is seen from (2.8), \(G_{\omega_m}^* = HG_{\omega_m} H \) and the previous formula takes the form

\[
\langle (LH)^{2m} e^{in\theta}, e^{in\theta} \rangle = \langle G_{\omega_m} e^{in\theta}, HG_{\omega_m} H e^{in\theta} \rangle.
\]

This implies with the help of the Schwarz inequality

\[
\langle (LH)^{2m} e^{in\theta}, e^{in\theta} \rangle = \langle HG_{\omega_m} e^{in\theta}, G_{\omega_m} H e^{in\theta} \rangle \leq \|HG_{\omega_m} e^{in\theta}\| \|G_{\omega_m} H e^{in\theta}\|. \tag{2.14}
\]

Since \(H e^{in\theta} = \pm e^{in\theta} \) and \(H \) is a unitary operator, (2.14) is equivalent to

\[
\langle (LH)^{2m} e^{in\theta}, e^{in\theta} \rangle \leq \| G_{\omega_m} e^{in\theta} \|^2.
\]

Combining this with (2.13), we obtain \(\varphi(m) \geq 0 \).

Finally, we prove that \(\varphi(\ell) \leq \varphi(\ell - 1) \) for \(2 \leq \ell \leq m \). Let \(\delta = (\delta_1, \ldots, \delta_\ell) \in \Delta_\ell \) be such that

\[
\varphi(\ell) = \text{Tr} \left[G_\delta^\ell G_\delta - (LH)^{2m} \right].
\]

This can be rewritten as

\[
\varphi(\ell) = \text{Tr} \left[(HL^{\delta_\ell}) \ldots (HL^{\delta_2}) (HL^{2\delta_1}) H (L^{\delta_2} H) \ldots (L^{\delta_\ell} H) - (LH)^{2m} \right].
\]

By Lemma 2.2, the last factor \(L^{\delta_\ell} H \) of the first product can be moved to the first position. Applying also \(H^2 = I \), we obtain

\[
\varphi(\ell) = \text{Tr} \left[L^{2\delta_1} H \prod_{i=2}^{\ell-1} (L^{\delta_{i-1}} H) L^{2\delta_1} H \prod_{i=2}^{\ell-1} (L^{\delta_i} H) - (LH)^{2m} \right]. \tag{2.15}
\]

Again by Lemma 2.2, this can be equivalently written as

\[
\varphi(\ell) = \text{Tr} \left[L^{2\delta_1} H \prod_{i=2}^{\ell-1} (L^{\delta_i} H) L^{2\delta_1} \prod_{i=2}^{\ell-1} (L^{\delta_{i-1}} H) - (LH)^{2m} \right].
\]

Therefore we can assume without loss of generality that \(\delta_1 \geq \delta_\ell \) in (2.15) (the product \(\Pi_{i=2}^{\ell-1} \) does not appear in (2.15) when \(\ell = 2 \).
We write (2.15) in the form

$$\varphi(\ell) = \text{Tr}[AB - CH],$$

(2.16)

where

$$A = L^{2d_\ell} H \prod_{i=2}^{\ell-1} (L^{\delta_{i+1}} H) L^{\delta_1 - \delta_\ell}, \quad B = L^{\delta_1 + \delta_\ell} H \prod_{i=2}^{\ell-1} (L^{\delta_i} H), \quad C = (LH)^{2m-1} L.$$

(2.17)

The operators A, B, C satisfy hypotheses of Lemma 2.4 and inequality (2.11) holds. From (2.16) and (2.11),

$$\varphi(\ell) \leq \frac{1}{2} \text{Tr}[AA^* - CH] + \frac{1}{2} \text{Tr}[B^* B - CH].$$

With the help of Lemma 2.2, this can be written in the form

$$\varphi(\ell) \leq \frac{1}{2} \text{Tr}[HAA^* H - CH] + \frac{1}{2} \text{Tr}[B^* B - CH]$$

$$= \frac{1}{2} \text{Tr}[(A^* H)^* (A^* H) - CH] + \frac{1}{2} \text{Tr}[B^* B - CH].$$

(2.18)

Assume first that $\delta_1 > \delta_\ell$. Comparing (2.5) and (2.17), we see that

$$A^* H = G_{(\delta_1 - \delta_\ell, \delta_2, \ldots, \delta_{\ell-1}, \delta_\ell)}, \quad B = G_{(\delta_1 + \delta_\ell, \delta_2, \ldots, \delta_{\ell-1})}, \quad CH = (LH)^{2m}. $$

(2.19)

Now, (2.18) takes the form

$$\varphi(\ell) \leq \frac{1}{2} \text{Tr} \left[G^*_{(\delta_1 - \delta_\ell, \delta_2, \ldots, \delta_{\ell-1}, 2\delta_\ell)} G_{(\delta_1 - \delta_\ell, \delta_2, \ldots, \delta_{\ell-1}, 2\delta_\ell)} - (LH)^{2m} \right]$$

$$+ \frac{1}{2} \text{Tr} \left[G^*_{(\delta_1 + \delta_\ell, \delta_2, \ldots, \delta_{\ell-1})} G_{(\delta_1 + \delta_\ell, \delta_2, \ldots, \delta_{\ell-1})} - (LH)^{2m} \right].$$

(2.20)

Here, $G_{(\delta_1 - \delta_\ell, \delta_2, \ldots, \delta_{\ell-1}, 2\delta_\ell)}$ and $G_{(\delta_1 + \delta_\ell, \delta_2, \ldots, \delta_{\ell-1})}$ should be replaced by $G_{(\delta_1 - \delta_\ell, 2\delta_\ell)}$ and $G_{(\delta_1 + \delta_\ell, \delta_2, \ldots, \delta_{\ell-1})}$ respectively in the case of $l = 2$. By the definition of the function φ,

$$\text{Tr} \left[G^*_{(\delta_1 - \delta_\ell, \delta_2, \ldots, \delta_{\ell-1}, 2\delta_\ell)} G_{(\delta_1 - \delta_\ell, \delta_2, \ldots, \delta_{\ell-1}, 2\delta_\ell)} - (LH)^{2m} \right] \leq \varphi(\ell),$$

$$\text{Tr} \left[G^*_{(\delta_1 + \delta_\ell, \delta_2, \ldots, \delta_{\ell-1})} G_{(\delta_1 + \delta_\ell, \delta_2, \ldots, \delta_{\ell-1})} - (LH)^{2m} \right] \leq \varphi(\ell - 1).$$

Therefore (2.20) implies the desired inequality $\varphi(\ell) \leq \varphi(\ell - 1)$.

Finally, we consider the case of $\delta_1 = \delta_\ell$. In this case, we have instead of (2.19)

$$A^* H = HG_{(\delta_2, \ldots, \delta_{\ell-1}, 2\delta_\ell)}, \quad B = G_{(\delta_1 + \delta_\ell, \delta_2, \ldots, \delta_{\ell-1})}, \quad CH = (LH)^{2m}.$$
and (2.18) takes the form

\[\varphi(\ell) \leq \frac{1}{2} \text{Tr} \left[G^*_\ell G_{(\delta_2, \ldots, \delta_{\ell-1}, 2\delta_\ell)} - (LH)^{2m} \right] \]

\[+ \frac{1}{2} \text{Tr} \left[G^*_\ell G_{(\delta_1+\delta_\ell, \delta_2, \ldots, \delta_{\ell-1})} - (LH)^{2m} \right]. \]

(2.21)

Here \(G_{(\delta_2, \ldots, \delta_{\ell-1}, 2\delta_\ell)} \) and \(G_{(\delta_1+\delta_\ell, \delta_2, \ldots, \delta_{\ell-1})} \) should be replaced by \(G_{(2\delta_\ell)} \) and \(G_{(\delta_1+\delta_\ell)} \) respectively in the case of \(l = 2 \). By the definition of the function \(\varphi \),

\[\text{Tr} \left[G^*_\ell G_{(\delta_2, \ldots, \delta_{\ell-1}, 2\delta_\ell)} - (LH)^{2m} \right] \leq \varphi(\ell-1), \]

\[\text{Tr} \left[G^*_\ell G_{(\delta_1+\delta_\ell, \delta_2, \ldots, \delta_{\ell-1})} - (LH)^{2m} \right] \leq \varphi(\ell-1). \]

Therefore (2.21) again implies the desired inequality \(\varphi(\ell) \leq \varphi(\ell-1) \). \(\square \)

We have the following characterization of the equality in Theorem 2.3.

Theorem 2.5. Let \(L \) be a self-adjoint pseudodifferential operator on \(\mathbb{S} \) such that \([L, H]\) is a smoothing operator. The equality

\[\text{Tr}[L^{2m} - (LH)^{2m}] = 0 \]

(2.22)

holds if and only if

\[(LH)^m = (HL)^m \quad \text{and} \quad L^2 H = HL^2. \]

(2.23)

The proof of the theorem is based on the following

Lemma 2.6. Let \(L \) be a self-adjoint pseudodifferential operator on \(\mathbb{S} \) such that the commutator \([L, H]\) is smoothing. Equality (2.22) holds if and only if

\[(LH)^m = (HL)^m \]

(2.24)

and

\[L^{\ell+1} H(LH)^{m-\ell-1} = L^{\ell-1} H(LH)^{m-\ell-1} L^2 \quad \text{for} \quad 1 \leq \ell \leq m - 1. \]

(2.25)

Condition (2.25) is absent in the case of \(m = 1 \).

Proof. By Theorem 2.3, (2.22) holds if and only if

\[\varphi(\ell) = 0 \quad \text{for} \quad 1 \leq \ell \leq m. \]

(2.26)

As is seen from (2.13) and (2.14), the equality \(\varphi(m) = 0 \) is equivalent to the following statement: the equality
\[
\langle HG_{\omega_m} e^{in\theta}, G_{\omega_m} He^{in\theta} \rangle = \|HG_{\omega_m} e^{in\theta}\| \|G_{\omega_m} He^{in\theta}\|
\]
holds for every \(n \in \mathbb{Z} \). Besides this, the norms \(\|HG_{\omega_m} e^{in\theta}\| \) and \(\|G_{\omega_m} He^{in\theta}\| \) coincide because \(He^{in\theta} = \pm e^{in\theta} \) and \(H \) is a unitary operator. Therefore \(\varphi(m) = 0 \) if and only if
\[
HG_{\omega_m} = G_{\omega_m} H.
\]
On using (2.8) and \(H^2 = I \), we see that the latter equality is equivalent to (2.24). In particular, we have proved the theorem in the case of \(m = 1 \).

Assume \(m \geq 2 \) for the rest of the proof. Replacing \(\ell \) with \(m - \ell \), we rewrite (2.25) in the equivalent form
\[
L^{m-\ell+1}H(LH)^{\ell-1} = L^{m-\ell-1}H(LH)^{\ell-1}L^2 \quad \text{for} \quad 1 \leq \ell \leq m - 1. \tag{2.27}
\]

We first prove the “only if” statement. Assume (2.24) to be valid. Let \(\omega_\ell \in \Delta_\ell \) be defined by (2.7). By induction in \(m - \ell \), we will prove the validity of (2.27) and of the equality
\[
0 = \varphi(\ell) = \text{Tr}[G_{\omega_\ell}^* G_{\omega_\ell} - (LH)^{2m}] \quad \text{for} \quad 1 \leq \ell \leq m. \tag{2.28}
\]
For \(\ell = m \), (2.28) holds by (2.13) and (2.26).

Now, we prove (2.27) and (2.28) for \(\ell = m - 1 \). By (2.10),
\[
\varphi(m) = \text{Tr} \left[H(LH)^{m-1}L^2H(LH)^{m-1} - (LH)^{2m} \right].
\]
By Lemma 2.2, we can transpose the factors \(H(LH)^{m-1} \) and \(L^2H(LH)^{m-1} \) on the right-hand side
\[
\varphi(m) = \text{Tr} \left[L^2H(LH)^{m-1}H(LH)^{m-1} - (LH)^{2m} \right] \\
= \text{Tr} \left[L^2H(LH)^{m-2}L^2H(LH)^{m-2} - (LH)^{2m} \right].
\]
This can be written in the form
\[
\varphi(m) = \text{Tr} [A^2 - (LH)^{2m}],
\]
where
\[
A = L^2H(LH)^{m-2} = G_{\omega_{m-1}}. \tag{2.29}
\]
The latter equality follows from (2.5) and (2.7). Operators \(A = B \) and \(C = (LH)^{2m-1}L \) satisfy hypotheses of Lemma 2.4. This is checked quite similarly to the corresponding check after formula (2.17). Applying Lemma 2.4, we obtain
0 = \varphi(m) \leq \frac{1}{2} \text{Tr} \left[G_{\omega_{m-1}}^s G_{\omega_{m-1}} - (LH)^{2m} \right] + \frac{1}{2} \text{Tr} \left[G_{\omega_{m-1}}^s G_{\omega_{m-1}} - (LH)^{2m} \right]
= \text{Tr} \left[G_{\omega_{m-1}}^s G_{\omega_{m-1}} - (LH)^{2m} \right] \leq \varphi(m - 1) = 0. \tag{2.30}

Thus, we have the equality in Lemma 2.4 which provides the following equality

\[L^2H(LH)^{m-2} = A = A^* = H(LH)^{m-2}L^2. \]

Hence (2.27)--(2.28) holds for \(\ell = m - 1 \).

Now, we are doing the induction step. Assume (2.27)--(2.28) to be valid for \(\ell = s \) with some \(s \) satisfying 2 \(\leq s \leq m - 1 \). We are going to prove (2.27)--(2.28) for \(\ell = s - 1 \). To this end we set

\[A = L^2H(LH)^{s-2}L^{m-s}, \quad B = L^{m-s+2}H(LH)^{s-2}, \quad C = (LH)^{2m-1}L \tag{2.31} \]

and apply Lemma 2.4

\[\text{Tr} \left[AB - (LH)^{2m} \right] \leq \frac{1}{2} \text{Tr} \left[AA^* - (LH)^{2m} \right] + \frac{1}{2} \text{Tr} \left[B^*B - (LH)^{2m} \right]. \tag{2.32} \]

On using definitions (2.5), (2.7) and Lemma 2.2, we easily derive from (2.31)

\[
\begin{align*}
\text{Tr} \left[AB - (LH)^{2m} \right] &= \text{Tr} \left[G_{\omega_{s}}^s G_{\omega_{s}} - (LH)^{2m} \right], \\
\text{Tr} \left[AA^* - (LH)^{2m} \right] &= \text{Tr} \left[G_{(m-s,1,\ldots,1,2)}^{s-2} G_{(m-s,1,\ldots,1,2)} - (LH)^{2m} \right], \\
\text{Tr} \left[B^*B - (LH)^{2m} \right] &= \text{Tr} \left[G_{\omega_{s-1}}^s G_{\omega_{s-1}} - (LH)^{2m} \right].
\end{align*}
\tag{2.33}
\]

By the induction hypothesis,

\[\text{Tr} \left[AB - (LH)^{2m} \right] = \text{Tr} \left[G_{\omega_{s}}^s G_{\omega_{s}} - (LH)^{2m} \right] = 0 \]

and, by the definition of \(\varphi \),

\[\begin{align*}
\text{Tr} \left[AA^* - (LH)^{2m} \right] + \text{Tr} \left[B^*B - (LH)^{2m} \right] &= \text{Tr} \left[G_{(m-s,1,\ldots,1,2)}^{s-2} G_{(m-s,1,\ldots,1,2)} - (LH)^{2m} \right] + \text{Tr} \left[G_{\omega_{s-1}}^s G_{\omega_{s-1}} - (LH)^{2m} \right] \\
&\leq \varphi(s) + \varphi(s - 1) = 0.
\end{align*} \]

Thus, we have actually the equality in (2.32). By Lemma 2.4, this means that

\[L^{m-s}H(LH)^{s-2}L^2 = A^* = B = L^{m-s+2}H(LH)^{s-2}. \]

This proves (2.27) for \(\ell = s - 1 \). Two traces on the right-hand side of (2.32) coincide because \(A^* = B \). In other words, two traces on the left-hand side of the equality
\[
\text{Tr}[G_{(m-s,1,\ldots,1,2)}^{s} G_{(m-s,1,\ldots,1,2)}^{s} - (LH)^{2m}] + \text{Tr}[G_{\omega_{s-1}}^{s} G_{\omega_{s-1}}^{s} - (LH)^{2m}] = 0
\]

coincide. Hence,

\[
\text{Tr}[G_{\omega_{s-1}}^{s} G_{\omega_{s-1}}^{s} - (LH)^{2m}] = 0.
\]

This proves (2.28) for \(\ell = s - 1 \). The induction step is completed.

Now, we prove the “if” statement. Assume (2.24)–(2.25) to be valid. We are going to prove by induction in \(m - \ell \) that

\[
\text{Tr}[G_{\omega_{\ell}}^{s} G_{\omega_{\ell}}^{s} - (LH)^{2m}] = 0 \quad \text{for} \quad 1 \leq \ell \leq m. \tag{2.34}
\]

For \(\ell = 1 \), this gives (2.22) in virtue of (2.4) and of \(G_{\omega_{1}} = L^{m}H \).

As we have shown at the beginning of the proof, (2.24) holds if and only if \(\varphi(m) = 0 \). This implies the validity of (2.34) for \(\ell = m \) (see (2.9)).

Let the operator \(A \) be defined by (2.29). Setting \(\ell = 1 \) in (2.25), we see that \(A = A^{*} \).

With the help of Lemma 2.4, this implies that the first inequality on (2.30) is actually the equality, i.e.,

\[
\text{Tr}[G_{\omega_{m-1}}^{s} G_{\omega_{m-1}}^{s} - (LH)^{2m}] = \varphi(m) = 0.
\]

This proves (2.34) for \(\ell = m - 1 \).

Now, we are doing the induction step. Assume (2.34) to be valid for \(\ell = s \) with some \(s \) satisfying \(2 \leq s \leq m - 1 \). Define operators \(A \) and \(B \) by (2.31). Setting \(\ell = m - s + 1 \) in (2.25), we see that \(A^{*} = B \). Therefore the equality holds in (2.32) and two traces on the right-hand side coincide, i.e.,

\[
\text{Tr} \left[AB - (LH)^{2m} \right] = \text{Tr} \left[B^{*}B - (LH)^{2m} \right].
\]

This gives with the help of (2.33)

\[
\text{Tr}[G_{\omega_{s}}^{s} G_{\omega_{s}}^{s} - (LH)^{2m}] = \text{Tr}[G_{\omega_{s-1}}^{s} G_{\omega_{s-1}}^{s} - (LH)^{2m}].
\]

By the induction hypothesis, the left-hand side is equal to zero. This finishes the induction step. \(\square \)

Proof of Theorem 2.5. By Lemma 2.6, it suffices to prove that conditions (2.23) are equivalent to (2.24)–(2.25).

Assume first (2.23) to be valid. The second of conditions (2.23) means that the operator \(L^{2} \) commutes with \(H \). Hence \(L^{2} \) commutes with every operator that can be written as a polynomial in \(L \) and \(H \). Therefore
\[L^{\ell+1} H(LH)^{m-\ell-1} = L^2 (L^{\ell-1} H(LH)^{m-\ell-1}) = L^{\ell-1} H(LH)^{m-\ell-1} L^2 \]

and (2.25) holds.

Now, assume (2.24)–(2.25) to be valid. The first of conditions (2.23) holds and it remains to prove that \(L^2 \) commutes with \(H \). We can also assume \(m \geq 2 \). Setting \(\ell = m - 1 \) in (2.25), we have

\[L^m H = L^{m-2} H L^2 \quad (2.35) \]

and the proof is finished by applying the following statement. \(\square \)

Lemma 2.7. Let \(L \) be a self-adjoint pseudodifferential operator on \(\mathcal{S} \). For an integer \(m \geq 2 \), (2.35) is equivalent to \(L^2 H = HL^2 \).

To prove Lemma 2.7, we need the following known statement. Unfortunately, we do not know any reference where the statement is presented explicitly. Therefore we present the proof too.

Lemma 2.8. Let \(A \) and \(B \) be two pseudodifferential operators on a smooth closed compact manifold \(X \). Assume \(A \) to be a self-adjoint operator. If \(A^k B = 0 \) for some integer \(k \geq 1 \), then \(AB = 0 \).

Proof. By induction in \(k \), we prove the more general statement:

if \(A^k Bu = 0 \) for \(u \in C^\infty(X) \), then \(ABu = 0 \). \((2.36) \)

The statement is trivially valid in the case of \(k = 1 \). Assume the statement to be valid with some \(k \geq 1 \) for every function \(u \in C^\infty(X) \) and for every pseudodifferential operator \(B \). In particular, (2.36) holds for \(B = I \), i.e.,

if \(A^k v = 0 \) for \(v \in C^\infty(X) \), then \(Av = 0 \). \((2.37) \)

Let now \(A^{k+1} Bu = 0 \) for some \(u \in C^\infty(X) \). We write this in the form \(A^k (ABu) = 0 \) and apply (2.37) to the function \(v = ABu \in C^\infty(X) \) to obtain \(A^2 Bu = 0 \). Then \(\|ABu\|^2 = \langle A^2 Bu, Bu \rangle = 0 \) by the self-adjointness of \(A \) which yields \(ABu = 0 \). \(\square \)

Proof of Lemma 2.7. There is nothing to prove in the case of \(m = 2 \). We assume \(m \geq 3 \). Rewrite (2.35) as

\[L^{m-2} (L^2 H - HL^2) = 0. \]

By Lemma 2.8 when \(X = \mathcal{S} \),

\[L(L^2 H - HL^2) = 0 \quad (2.38) \]
and hence

\[(L^2H - HL^2)L = -(L(L^2H - HL^2))^* = 0.\] \hspace{1cm} \text{(2.39)}

Given a function \(u \in C^\infty(\mathbb{S})\), we consider the decomposition \(u = u_1 + u_2\), where \(u_1 \in \text{Ran}(L)\) and \(u_2 \in \text{Ran}(L^\perp) = \text{Ker}(L)\) (by the self-adjointness of \(L\)) when we look at \(L\) as an unbounded operator on \(L^2(\mathbb{S})\). Then we have \((L^2H - HL^2)u_1 = 0\) by (2.39) and \((L^2H - HL^2)u = L^2Hu_2\). Therefore

\[\| (L^2H - HL^2)u \| = \langle L^2Hu_2, (L^2H - HL^2)u \rangle = \langle LHu_2, L(L^2H - HL^2)u \rangle = 0\]

by (2.38). Hence \((L^2H - HL^2)u = 0\). \(\square\)

As the first consequence of Theorem 2.5, we have the following

Corollary 2.9. Let \(L\) be a self-adjoint pseudodifferential operator on \(\mathbb{S}\) such that the commutator \([L, H]\) is smoothing. If \(\text{Tr}[L^{2m} - (LH)^{2m}] = 0\), then \(\text{Tr}[L^{pm} - (LH)^{pm}] = 0\) for every integer \(p \geq 1\).

Proof. We argue by induction in \(p\). Assume \(\text{Tr}[L^{2pm} - (LH)^{2pm}] = 0\) for some \(p \geq 1\). By Theorem 2.5 applied to both \(m\) and \(pm\), we have

\[L^2H = HL^2, \quad (LH)^m = (HL)^m, \quad (LH)^{pm} = (HL)^{pm}.\]

From this

\[(LH)^{(p+1)m} = (LH)^{pm}(LH)^m = (HL)^{pm}(HL)^m = (HL)^{(p+1)m}.\]

Applying Theorem 2.5 again, we derive from the latter formula

\[\text{Tr}[L^{2(p+1)m} - (LH)^{2(p+1)m}] = 0. \quad \square\]

Corollary 2.9 is not used in next sections. Nevertheless, for the sake of completeness, we discuss some questions related to Corollary 2.9 in the rest of the current Section.

For \(L = \Lambda^\frac{\alpha}{2} a \Lambda^\frac{\alpha}{2}\) where \(a\) is a smooth real function on the circle, identity (1.7) and Theorem 1.2 show that if there is a positive integer \(m\) such that \(\text{Tr}[L^{2m} - (LH)^{2m}] = 0\), then \(\text{Tr}[L^{2j} - (LH)^{2j}] = 0\) for any positive integer \(j\). Such a property is much stronger than the statement of Corollary 2.9.

To emphasize the optimality of Corollary 2.9, we provide an example of a pseudodifferential operator \(L\) such that \([L, H]\) is a smoothing operator and \(\text{Tr}[L^{2m} - (LH)^{2m}] = 0\) for a positive integer \(m\) but \(\text{Tr}[L^{2j} - (LH)^{2j}] > 0\) for any positive integer \(j < m\), see Proposition 2.11 below. Although Corollary 2.9 is optimal in certain sense, it can be improved, see Corollary 2.13 below.
For $\lambda \in (0, +\infty)$, let L_{λ} be the self-adjoint finite rank operator defined by

$$L_{\lambda} e^{i\theta} = e^{i\theta} + \lambda e^{-i\theta}, \quad L_{\lambda} e^{-i\theta} = -e^{-i\theta} + \lambda e^{i\theta}, \quad L_{\lambda} e^{in\theta} = 0 \quad \text{for} \quad n \notin \{-1, 1\}. \quad (2.40)$$

Lemma 2.10. The equality

$$L_{\lambda}^2 H = HL_{\lambda}^2 \quad (2.41)$$

holds for every $0 < \lambda \in \mathbb{R}$. For an integer $j \geq 2$, the equality

$$(L_{\lambda} H)^j = (HL_{\lambda})^j, \quad (2.42)$$

holds if and only if

$$\Im((1 + i\lambda)^j) = 0.$$

Proof. Definition (2.40) implies that

$$L_{\lambda}^2 e^{\pm i\theta} = (1 + \lambda^2) e^{\pm i\theta}, \quad L_{\lambda}^2 e^{in\theta} = 0 \quad \text{for} \quad n \notin \{-1, 1\}. \quad (2.43)$$

Hence L_{λ}^2 commutes with H, i.e., (2.41) holds.

From (2.40) it follows that

$$L_{\lambda} H e^{i\theta} = e^{i\theta} + \lambda e^{-i\theta}, \quad L_{\lambda} H e^{-i\theta} = e^{-i\theta} - \lambda e^{i\theta}, \quad L_{\lambda} e^{in\theta} = 0 \quad \text{for} \quad n \notin \{-1, 1\}.$$

The plane P spanned by $\{e^{\pm i\theta}\}$ is an invariant subspace of the operator $L_{\lambda} H$ and the restriction of $L_{\lambda} H$ to P^\perp is zero. In the basis $(e^{-i\theta}, e^{i\theta})$, the restriction M_{λ} of $L_{\lambda} H$ to P is expressed by the matrix

$$M_{\lambda} = I + \lambda J, \quad \text{where} \quad J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

and I is the unit 2×2-matrix. Since $J^2 = -I$,

$$M_{\lambda}^j = \sum_{\ell=0}^{j} \binom{j}{\ell} \lambda^{\ell} J^\ell = \sum_{\ell=0}^{\lfloor j/2 \rfloor} (-1)^\ell \binom{j}{2\ell} (j)_{2\ell+1} \lambda^{2\ell}, \quad (2.43)$$

where $\lfloor x \rfloor$ is the integer part of $x \geq 0$ and the following agreement is used: $\binom{j}{2\ell+1} = 0$ if $j < 2\ell + 1$. Equality (2.42) is equivalent to

$$M_{\lambda}^j = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

As seen from

$$\sum_{\ell=0}^{\lfloor j/2 \rfloor} (-1)^\ell \left(\frac{j}{2\ell + 1} \right) \lambda^{2\ell+1} = 0.$$

Finally, we observe that the left-hand side of the last equality is $\Im((1 + i\lambda)^j)$. □

The following statement emphasizes the optimality of Corollary 2.9.

Proposition 2.11. Given an integer $m \geq 2$, set $\lambda = \tan \left(\frac{\pi}{m} \right)$. For an integer $j \geq 1$, the equality

$$\text{Tr}[L^2_L - (L_H)^2] = 0$$

holds if and only if j is an integer multiple of m.

Proof. As is seen from

$$\Im((1 + i\lambda)^j) = (\cos \frac{\pi}{m})^{-j} \Re(e^{i\pi/j}),$$

(2.42) holds if and only if j is an integer multiple of m. Applying Lemma 2.10, we obtain the statement: $(L_H)^j = (HL_\lambda)^j$ if and only if j is an integer multiple of m. By Theorem 2.5 and (2.41), the latter statement is equivalent to the proposition. □

The following result sharpens Corollary 2.9.

Theorem 2.12. Let L be a self-adjoint pseudodifferential operator on S such that the commutator $[L, H]$ is smoothing. Let m be the greatest common factor of integers $m_1 > 1$ and $m_2 > 1$. If

$$\text{Tr}[L^{2m_1} - (LH)^{2m_1}] = \text{Tr}[L^{2m_2} - (LH)^{2m_2}] = 0,$$

then $(LH)^m = (HL)^m$ and $\text{Tr}[L^{2pm} - (LH)^{2pm}] = 0$ for any integer $p \geq 1$.

Together with inequality (2.10), this implies

Corollary 2.13. Let L be a self-adjoint pseudodifferential operator on S such that the commutator $[L, H]$ is smoothing. Either $\text{Tr}[L^{2p} - (LH)^{2p}] > 0$ for every positive integer p or there exists a positive integer m such that, for every positive integer k, $\text{Tr}[L^{2k} - (LH)^{2k}] = 0$ if and only if k is an integer multiple of m.

Proof of Theorem 2.12. If m_2 is an integer multiple of m_1 or m_1 is an integer multiple of m_2, the statement follows from Corollary 2.9. For the rest of the proof we assume that $m < \min(m_1, m_2)$. Choose integers a and b such that $am_1 + bm_2 = m$. We can assume without loss of generality that $a > 0$ and $b < 0$ (otherwise invert roles of m_1 and m_2).
By Theorem 2.5, L^2 commutes with H and the following equalities hold:

$$(LH)^{m_1} = (HL)^{m_1}, \quad (LH)^{m_2} = (HL)^{m_2}.$$

On using these equalities and $am_1 = -bm_2 + m$, we derive

$$
(LH)^{am_1} = (LH)^{-bm_2+m} = (LH)^{-bm_2}(LH)^m, \\
(LH)^{am_1} = (HL)^{am_1} = (HL)^{-bm_2+m} = (HL)^{-bm_2}(HL)^m = (LH)^{-bm_2}(HL)^m.
$$

This implies

$$(LH)^{-bm_2}((LH)^m - (HL)^m) = 0.$$

On using Lemma 2.14 that is presented below, we obtain $(LH)^m = (HL)^m$. Then the statement of the theorem follows from Corollary 2.9. \(\square\)

Lemma 2.14. Let L be a self-adjoint pseudodifferential operator on \mathbb{S} such that L^2 commutes with H. If $(LH)^k((LH)^m - (HL)^m) = 0$ for some positive integers k and m, then $(LH)^m = (HL)^m$.

Proof. We first prove by induction in ℓ the following statement: for every $u \in C^\infty(\mathbb{S})$,

$$
\text{if } (LH)^\ell Lu = 0 \text{ for some } \ell \in \mathbb{N}, \text{ then } Lu = 0. \quad (2.44)
$$

There is nothing to prove when $\ell = 0$. Assume (2.44) to be valid for some $\ell \geq 0$ and assume that $(LH)^{\ell+1}Lv = (LH)^{\ell}(LHLv) = 0$ for some $v \in C^\infty(\mathbb{S})$. Applying the induction hypothesis to the function $u = HLv$, we obtain

$$
LHLv = 0.
$$

On using the self-adjointness of L and permutability of L^2 and H, we derive from the last formula

$$
0 = \|LHLv\|^2 = \langle LHLv, LHLv \rangle = \langle L^2HLv, HLv \rangle \\
= \langle HL^3v, HLv \rangle = \langle L^3v, Lv \rangle = \|L^2v\|^2.
$$

We have also used that H is a unitary operator. Hence $Lv = 0$. We have thus proved (2.44).

Now, the equalities

$$
0 = (LH)^k((LH)^m - (HL)^m) = (LH)^{k-1}L((LH)^m - (HL)^m) \\
= (LH)^{k-1}L((HL)^m - (LH)^m)H
$$

Please cite this article in press as: A. Jollivet, V. Sharafutdin, Steklov zeta-invariants and a compactness theorem for isospectral families of planar domains, J. Funct. Anal. (2018), https://doi.org/10.1016/j.jfa.2018.06.019
Theorem 1.1

Let \(\Lambda^{1/2} : C^\infty(\mathbb{S}) \to C^\infty(\mathbb{S}) \) be the nonnegative self-adjoint operator satisfying \((\Lambda^{1/2})^2 = \Lambda\). In other words, \(\Lambda^{1/2} \) is defined by

\[
\Lambda^{1/2} e^{i \theta} = \sqrt{|n|} e^{i \theta} \quad (n \in \mathbb{Z}).
\]

(3.1)

The operator \(D \) can be expressed through \(\Lambda^{1/2} \) and \(H \):
\[D = \Lambda^{1/2} H \Lambda^{1/2}. \]

(3.2)

Obviously, operators \(\Lambda^{1/2} \) and \(H \) commute.

Given a real function \(a \in C^\infty(\mathbb{S}) \), define the operator \(L : C^\infty(\mathbb{S}) \to C^\infty(\mathbb{S}) \) by formula (1.6), where \(a \) stands for the operator of multiplication by the function \(a \). We do not designate the dependence of \(L \) on \(a \) explicitly in order to use formulas of the previous section without changing notations. Nevertheless, the reader should remember that \(L \) depends on \(a \).

Observe that \(L \) is a self-adjoint first order pseudodifferential operator and satisfies

\[
[L, H] = \Lambda^{1/2} [a, H] \Lambda^{1/2}.
\]

(3.3)

The commutator \([a, H]\) is a smoothing operator for every function \(a \in C^\infty(\mathbb{S}) \) [5, Section 5.4]. We see from (3.3) that \([L, H]\) is also a smoothing operator. By Theorem 2.3,

\[
\text{Tr}[L^{2m} - (LH)^{2m}] \geq 0.
\]

(3.4)

As follows from (1.6) and (3.2),

\[
L^{2m} = \Lambda^{1/2} (a\Lambda)^{2m-1} a\Lambda^{1/2}, \quad (LH)^{2m} = \Lambda^{1/2} (aD)^{2m-1} a\Lambda^{1/2} H.
\]

(3.5)

Substitute these values into (3.4) to obtain

\[
\text{Tr}[\Lambda^{1/2} (a\Lambda)^{2m-1} a\Lambda^{1/2} - \Lambda^{1/2} (aD)^{2m-1} a\Lambda^{1/2} H] \geq 0.
\]

With the help of the trigonometric basis, this can be written as

\[
\sum_{n \in \mathbb{Z}} \left(\langle (a\Lambda)^{2m-1} a\Lambda^{1/2} e^{in\theta}, \Lambda^{1/2} e^{in\theta} \rangle - \langle (aD)^{2m-1} a\Lambda^{1/2} He^{in\theta}, \Lambda^{1/2} e^{in\theta} \rangle \right) \geq 0.
\]

As is seen from (2.1) and (3.1),

\[
\langle (a\Lambda)^{2m-1} a\Lambda^{1/2} e^{in\theta}, \Lambda^{1/2} e^{in\theta} \rangle = |n| \langle (a\Lambda)^{2m-1} ae^{in\theta}, e^{in\theta} \rangle = \langle (a\Lambda)^{2m} e^{in\theta}, e^{in\theta} \rangle,
\]

\[
\langle (aD)^{2m-1} a\Lambda^{1/2} He^{in\theta}, \Lambda^{1/2} e^{in\theta} \rangle = n \langle (aD)^{2m-1} ae^{in\theta}, e^{in\theta} \rangle = \langle (aD)^{2m} e^{in\theta}, e^{in\theta} \rangle.
\]

Therefore

\[
\text{Tr}[L^{2m} - (LH)^{2m}]
\]

\[
= \sum_{n \in \mathbb{Z}} \left(\langle (a\Lambda)^{2m-1} a\Lambda^{1/2} e^{in\theta}, \Lambda^{1/2} e^{in\theta} \rangle - \langle (aD)^{2m-1} a\Lambda^{1/2} He^{in\theta}, \Lambda^{1/2} e^{in\theta} \rangle \right)
\]

\[
= \sum_{n \in \mathbb{Z}} \left(\langle (a\Lambda)^{2m} e^{in\theta}, e^{in\theta} \rangle - \langle (aD)^{2m} e^{in\theta}, e^{in\theta} \rangle \right) = \text{Tr}[(a\Lambda)^{2m} - (aD)^{2m}] = Z_m(a).
\]

In particular, we have proved (1.7). Together with (1.7), inequality (3.4) proves the second statement of Theorem 1.1: \(Z_m(a) \geq 0 \).
Lemma 3.1. Given a real function \(a \in C^\infty(S) \) and integer \(m \geq 1 \), define functions \(g_n \in C^\infty(S) \) \((n \in \mathbb{Z}) \) by

\[
g_n(\theta) = (aD)^{m-1}ae^{in\theta}.
\] (3.6)

Then

\[
Z_m(a) \geq 4 \sum_{n>0,k>0} nk|\widehat{g_n}(k)|^2.
\] (3.7)

Proof. By Theorem 2.3,

\[
\text{Tr}[L^{2m} - (LH)^{2m}] \geq \text{Tr}[H(LH)^{m-1}L^2H(LH)^{m-1} - (LH)^{2m}] .
\]

By (1.7), the left-hand side coincides with \(Z_m(a) \), i.e., the inequality can be written as

\[
Z_m(a) \geq \text{Tr}[H(LH)^{m-1}L^2H(LH)^{m-1} - (LH)^{2m}] .
\] (3.8)

As follows from (3.2) and (1.6),

\[
H(LH)^{m-1}L^2H(LH)^{m-1} = H\Lambda^{1/2}(aD)^{m-1}a\Lambda(aD)^{m-1}a\Lambda^{1/2}H.
\]

Substitute this value and (3.5) into (3.8)

\[
Z_m(a) \geq \text{Tr}[H\Lambda^{1/2}(aD)^{m-1}a\Lambda(aD)^{m-1}a\Lambda^{1/2}H - \Lambda^{1/2}(aD)^{2m-1}a\Lambda^{1/2}H].
\]

On using the trigonometric basis, we write this in the form

\[
Z_m(a) \geq \sum_{n \in \mathbb{Z}} \left(\langle H\Lambda^{1/2}(aD)^{m-1}a\Lambda(aD)^{m-1}a\Lambda^{1/2}He^{in\theta}, e^{in\theta} \rangle
- \langle \Lambda^{1/2}(aD)^{2m-1}a\Lambda^{1/2}He^{in\theta}, e^{in\theta} \rangle \right).
\] (3.9)

On using the equalities \(He^{in\theta} = \text{sgn}(n)e^{in\theta} \) and \(\Lambda^{1/2}e^{in\theta} = |n|^{1/2}e^{in\theta} \), we transform the first summand on the right-hand side of (3.9) as follows:

\[
\langle H\Lambda^{1/2}(aD)^{m-1}a\Lambda(aD)^{m-1}a\Lambda^{1/2}He^{in\theta}, e^{in\theta} \rangle
= \langle (aD)^{m-1}a\Lambda(aD)^{m-1}a\Lambda^{1/2}He^{in\theta}, \Lambda^{1/2}He^{in\theta} \rangle
= |n|\langle ((aD)^{m-1}a\Lambda(aD)^{m-1}a\Lambda^{1/2}He^{in\theta}, e^{in\theta} \rangle
= |n|\langle \Lambda(aD)^{m-1}a\Lambda^{1/2}He^{in\theta}, (aD)^{m-1}a\Lambda^{1/2}He^{in\theta} \rangle
= |n|\langle \Lambda g_n, g_n \rangle.
\]

We have used (3.6) for the last equality of the chain. The second summand on the right-hand side of (3.9) is transformed similarly:
\[
\langle \Lambda^{1/2}(aD)^{2m-1}a\Lambda^{1/2}He^{in\theta}, e^{in\theta} \rangle = \langle (aD)^{2m-1}a\Lambda^{1/2}He^{in\theta}, \Lambda^{1/2}e^{in\theta} \rangle \\
= n\langle (aD)^{2m-1}ae^{in\theta}, e^{in\theta} \rangle = n\langle ((aD)^{m-1}a)^*-D(aD)^{m-1}ae^{in\theta}, e^{in\theta} \rangle \\
= n\langle D(aD)^{m-1}ae^{in\theta}, (aD)^{m-1}ae^{in\theta} \rangle = n\langle Dg_n, g_n \rangle.
\]

Now, (3.9) takes the form

\[
Z_m(a) \geq \sum_{n \in \mathbb{Z}} \left| n\langle \Lambda g_n, g_n \rangle - n\langle Dg_n, g_n \rangle \right|.
\]

(3.10)

We transform the sum on the right-hand side of (3.10) as follows:

\[
\sum_{n \in \mathbb{Z}} \left(n\langle \Lambda g_n, g_n \rangle - n\langle Dg_n, g_n \rangle \right) = \\
= \sum_{n>0} n\langle \Lambda g_n, g_n \rangle - \langle Dg_n, g_n \rangle + \sum_{n<0} (-n)\langle \Lambda g_n, g_n \rangle + \langle Dg_n, g_n \rangle \\
= \sum_{n>0} n\langle (\Lambda - D)g_n, g_n \rangle + \sum_{n>0} n\langle (\Lambda + D)g_{-n}, g_{-n} \rangle.
\]

(3.11)

The operator \(D\) satisfies \(D\overline{g} = -D\overline{g}\). Therefore

\[
\overline{g}_n = (aD)^{2m-1}ae^{in\theta} = -(aD)^{2m-1}ae^{-in\theta} = -g_n.
\]

Formula (3.11) is now written as

\[
\sum_{n \in \mathbb{Z}} \left(n\langle \Lambda g_n, g_n \rangle - n\langle Dg_n, g_n \rangle \right) = \sum_{n>0} n\langle (\Lambda - D)g_n, g_n \rangle + \sum_{n>0} n\langle (\Lambda + D)\overline{g}_n, \overline{g}_n \rangle.
\]

(3.12)

For any function \(g\),

\[
\langle (\Lambda - D)g, g \rangle = 2 \sum_{k>0} k|\hat{g}_{-k}|^2, \quad \langle (\Lambda + D)g, g \rangle = 2 \sum_{k>0} k|\hat{g}_k|^2.
\]

Therefore (3.12) takes the form

\[
\sum_{n \in \mathbb{Z}} \left(n\langle \Lambda g_n, g_n \rangle - n\langle Dg_n, g_n \rangle \right) = 2 \sum_{n>0, k>0} nk|\hat{g}_n|_{-k}^2 + 2 \sum_{n>0, k>0} nk|\hat{g}_k|_{k}^2.
\]

Since \(\hat{g}_k = \overline{\hat{g}_{-k}}\) for every function \(g\), the latter formula can be written as

\[
\sum_{n \in \mathbb{Z}} \left(n\langle \Lambda g_n, g_n \rangle - n\langle Dg_n, g_n \rangle \right) = 4 \sum_{n>0, k>0} nk|\hat{g}_n|_{-k}^2.
\]

Replacing the right-hand side of (3.10) with the latter expression, we arrive to (3.7). \[\square\]
Proof of Theorem 1.1. For \(m = 1 \), estimate (1.4) follows from Edward’s formula (1.3). Therefore we assume \(m \geq 2 \). Such \(m \) is fixed till the end of the proof as well as a real function \(a \in C^\infty(S) \). The dependence of different quantities on \(m \) and \(a \) is not designated explicitly.

Obviously, for \(1 \leq n \in \mathbb{N} \),

\[
(aD)^{m-1}ae^{in\theta} = \left(\sum_{s=1}^{m} n^{s-1} f_s \right) e^{in\theta},
\]

(3.13)

where

\[
f_m = a^m = b
\]

(3.14)

and

\[
f_s = P_s(a, Da, \ldots, D^{m-s}a) \quad \text{for} \quad s = 1, \ldots, m - 1
\]

with some universal polynomials \(P_s(X_1, \ldots, X_{m-s}) \) in \(m - s \) variables.

Define functions \(g_n \in C^\infty(S) \) (\(n \in \mathbb{Z} \)) by (3.6). With the help of (3.13), we see that

\[
(\hat{g}_n)_{-k} = \sum_{s=1}^{m} n^{s-1} (\hat{f}_s)_{-(n+k)} \quad (k = 1, 2, \ldots).
\]

Substituting this value into (3.7), we obtain

\[
Z_m(a) \geq 4 \sum_{n,k=1}^{\infty} nk \left| \sum_{s=1}^{m} n^{s-1} (\hat{f}_s)_{-(n+k)} \right|^2 = 4 \sum_{j=2}^{\infty} \sum_{n=1}^{j-1} n(j-n) \left| \sum_{s=1}^{m} n^{s-1} (\hat{f}_s)_{-j} \right|^2. \quad (3.15)
\]

For every integer \(j \geq 2 \), introduce the sesquilinear form \(F_j : \mathbb{C}^m \times \mathbb{C}^m \to \mathbb{C} \) by

\[
F_j(x, y) = \frac{1}{j} \sum_{n=1}^{j-1} \frac{n}{j}(1 - n/j) \sum_{s=1}^{m} (n/j)^{s-1} x_s \sum_{t=1}^{m} (n/j)^{t-1} y_t.
\]

Observe that the corresponding Hermitian form is non-negative:

\[
F_j(x, x) = \frac{1}{j} \sum_{n=1}^{j-1} \frac{n}{j}(1 - n/j) \left| \sum_{s=1}^{m} (n/j)^{s-1} x_s \right|^2 \geq 0. \quad (3.16)
\]

For \(j \geq 2 \), define the vector \(\tilde{f}_j \in \mathbb{C}^m \) by

\[
(\tilde{f}_j)_s = j^{s-1}(\hat{f}_s)_{-j} \quad (1 \leq s \leq m).
\]

(3.17)
Then
\[\sum_{n=1}^{j-1} n(j-n) \left| \sum_{s=1}^{m} n^{s-1}(\hat{f}_s)_{-j} \right|^2 = j^3 F_j(\hat{f}_j, \tilde{f}_j) \]
and inequality (3.15) can be written in the form
\[Z_m(a) \geq 4 \sum_{j=2}^\infty j^3 F_j(\hat{f}_j, \tilde{f}_j). \]

Since all summands on the right-hand side are non-negative, this implies
\[Z_m(a) \geq 4 \sum_{j=m+1}^\infty j^3 F_j(\hat{f}_j, \tilde{f}_j). \] (3.18)

Lemma 3.2. There exists a positive constant \(c_m \) depending only on \(m \) such that
\[F_j(x, x) \geq c_m \|x\|^2 \]
for every \(j \geq m+1 \) and for every \(x \in \mathbb{C}^m \), where \(\|x\| = \left(\sum_{s=1}^{m} |x_s|^2 \right)^{1/2} \) is the standard norm on \(\mathbb{C}^m \).

The proof of the lemma is presented at the end of the section, and now we finish the proof of Theorem 1.1.

With the help of Lemma 3.2, we derive from (3.18)
\[Z_m(a) \geq 4c_m \sum_{j=m+1}^\infty j^3 \|\tilde{f}_j\|^2 \geq 4c_m \sum_{j=m+1}^\infty j^3 |(\hat{f}_j)_m|^2. \]

By (3.14) and (3.17), \((\hat{f}_j)_m = j^{m-1}\hat{b}_{-j} \). Substituting this value into the last inequality, we obtain
\[Z_m(a) \geq 4c_m \sum_{j=m+1}^\infty j^{2m+1}|\hat{b}_{-j}|^2. \]
This coincides with desired inequality (1.4) because \(|\hat{b}_{-j}| = |\hat{b}_j| \). \(\square \)

Proof of Lemma 3.2. Introduce the sesquilinear form \(F_\infty : \mathbb{C}^m \times \mathbb{C}^m \to \mathbb{C} \) by
\[F_\infty(x, y) = \int_0^1 t(1-t) \sum_{s=1}^{m} t^{s-1} x_s \sum_{s'=1}^{m} t^{s'-1} \overline{y_{s'}} \, dt. \]
The right-hand side of (3.16) is the Riemann integral sum for the integral

$$F_\infty(x, x) = \int_0^1 t(1-t) \left| \sum_{s=1}^m t^{s-1} x_s \right|^2 dt. \quad (3.19)$$

Therefore $F_\infty = \lim_{j \to \infty} F_j$. Since the Hermitian forms $F_j(x, x)$ and $F_\infty(x, x)$ are non-negative, it suffices to prove that, for $j \geq m+1$,

$$F_\infty(x, x) \neq 0 \quad \text{and} \quad F_j(x, x) \neq 0 \quad \text{for} \quad 0 \neq x \in \mathbb{C}^m.$$

In view of (3.19), the equality $F_\infty(x, x) = 0$ means that

$$\sum_{s=1}^m t^{s-1} x_s = 0 \quad \text{for} \quad t \in (0, 1).$$

Choosing a sequence $0 < t_1 < \cdots < t_m < 1$, we obtain the linear system

$$\sum_{s=1}^m t_k^{s-1} x_s = 0 \quad (1 \leq k \leq m)$$

with the non-degenerate Vandermonde matrix $(t_k^{s-1})_{1 \leq k, s \leq m}$. Therefore $x = 0$.

Let $j \geq m+1$. In view of (3.16), the equality $F_j(x, x) = 0$ implies

$$\sum_{s=1}^m (n/j)^{s-1} x_s = 0 \quad (1 \leq n \leq m).$$

This is again a linear system with non-degenerate Vandermonde matrix which implies $x = 0$. □

4. The null space of zeta-invariants

In the case of a general operator L, Corollary 2.9 cannot be improved. However, Corollary 2.9 is greatly improved by Theorem 1.3 when $L = \Lambda^{1/2} a \Lambda^{1/2}$ for a real function $a \in C^\infty(S)$.

Proof of Theorem 1.2. The case of $m = 1$ follows from Edward’s formula (1.3). We assume $m \geq 2$ for the rest of the proof.

We first prove the “if” statement. Assume (1.5) to be valid. Then

$$\Lambda a \Lambda = DaD. \quad (4.1)$$

Indeed, for $n \in \mathbb{Z}$,
\[DaDe^{in\theta} = nDae^{in\theta} = n\hat{a}_0D(e^{in\theta}) + n\hat{a}_1D(e^{i(n+1)\theta}) + n\hat{a}_{-1}D(e^{i(n-1)\theta})
= n^2\hat{a}_0e^{in\theta} + n(n + 1)\hat{a}_1e^{i(n+1)\theta} + n(n - 1)\hat{a}_{-1}e^{i(n-1)\theta}
= n^2\hat{a}_0e^{in\theta} + |n||n + 1|\hat{a}_1e^{i(n+1)\theta} + |n||n - 1|\hat{a}_{-1}e^{i(n-1)\theta} = \Lambda a\Lambda e^{in\theta}.\]

As is seen from (4.1) \((a\Lambda)^{2m} = (aD)^{2m}\) and hence \(Z_m(a) = 0\).

Now, we prove the “only if” part. Assume that \(Z_m(a) = 0\). By (1.7),
\[
\text{Tr}[L^{2m} - (LH)^{2m}] = Z_m(a) = 0
\]
for the operator \(L = \Lambda^{1/2}a\Lambda^{1/2}\). Apply Theorem 2.5 to obtain \(L^2H = HL^2\), i.e.,
\[\Lambda^{1/2}a\Lambda\Lambda^{1/2}H = H\Lambda^{1/2}a\Lambda\Lambda^{1/2}.
\]

This implies
\[\Lambda^{1/2}a\Lambda\Lambda^{1/2}He^{i\theta} = H\Lambda^{1/2}a\Lambda\Lambda^{1/2}e^{i\theta}.
\]
Since \(\Lambda^{1/2}He^{i\theta} = \Lambda^{1/2}e^{i\theta} = e^{i\theta}\), the last formula can be written as
\[\Lambda^{1/2}\tilde{h} = H\Lambda^{1/2}\tilde{h}\] (4.2)
for the function \(\tilde{h}\) defined by
\[\tilde{h} = a\Lambda e^{i\theta}.\] (4.3)

Applying the operator \(\Lambda^{1/2}\) to equality (4.2), we obtain \((\Lambda - \Lambda^{1/2}H\Lambda^{1/2})\tilde{h} = 0\). With the help of (3.2), this can be written as
\[(\Lambda - D)\tilde{h} = 0.\] (4.4)

Let \(\tilde{D} = \{z \in \mathbb{C} \mid |z| < 1\}\) be the interior of the unit disk \(D\). We say that a function \(\varphi \in C(S)\) admits a holomorphic extension to \(\tilde{D}\) if there exists \(\Phi \in C(\tilde{D})\) which is holomorphic in \(\tilde{D}\) and such that \(\Phi|_S = \varphi\). In other words a function \(\varphi \in C(S)\) admits a holomorphic extension to \(\tilde{D}\) if and only if its Fourier coefficients satisfy: \(\hat{\varphi}_n = 0\) for \(n < 0\). In the latter case the holomorphic extension \(\Phi\) to \(\tilde{D}\) is given by the formula
\[\Phi(z) = \sum_{n \in \mathbb{N}} \hat{\varphi}_nz^n, \quad z \in \tilde{D}.
\]

As follows from definitions of \(\Lambda\) and \(D\), \((\Lambda - D)\tilde{h} = -2\sum_{k<0} k\hat{h}_k e^{ik\theta}\). Therefore each of equations (4.2) and (4.4) is equivalent to the statement:
\[\tilde{h}\text{ admits a holomorphic extension to } \tilde{D}.\] (4.5)
Next, we prove that
\[\delta = (ae^{i\theta})^m \text{ admits a holomorphic extension to } \mathbb{D}. \] (4.6)
This follows from (1.4). Indeed, since \(Z_m(a) = 0 \), we see that \((a^m)_j = 0 \) for \(|j| \geq m + 1 \). Hence \(\delta \) admits the holomorphic extension given by the polynomial
\[\sum_{j=0}^{2m} (a^m)_{j-m} z^j \quad (z \in \mathbb{D}). \]

We assume for the rest of the proof that \(a \) is not identically zero. In particular the function \(\delta \) in (4.6) is not identically zero and \(a(\theta) \neq 0 \) for \(\theta \) belonging to a dense subset of \(\mathbb{S} \). Then from (4.3) it follows that
\[\tilde{h} = a\Lambda ae^{i\theta} = a(\Lambda + D)(ae^{i\theta}) - (aDa)e^{i\theta} - a^2 e^{i\theta}. \]
Multiply this equation by \(\delta \)
\[\delta \tilde{h} = a\delta(\Lambda + D)(ae^{i\theta}) - \delta(aDa)e^{i\theta} - \delta a^2 e^{i\theta}. \] (4.7)
As easily follows from definition (4.6) of \(\delta \),
\[\delta(aDa)e^{i\theta} + \delta a^2 e^{i\theta} = \frac{1}{m} a^2 (D\delta)e^{i\theta}. \]
Therefore (4.7) can be written as
\[\delta \tilde{h} = a\delta(\Lambda + D)(ae^{i\theta}) - \frac{1}{m} a^2 e^{i\theta} D\delta. \] (4.8)
Introduce the functions
\[f = -\frac{1}{m} e^{i\theta} D\delta, \quad g = \delta(\Lambda + D)(ae^{i\theta}), \quad h = \delta \tilde{h}. \] (4.9)
Then equation (4.8) is written as
\[h = a^2 f + ag. \] (4.10)
Multiply this equation by \(a^{m-2} \)
\[a^m f = a^{m-2} h - a^{m-1} g. \]
As is seen from definition (4.6) of \(\delta \), \(a^m = e^{-im\theta}\delta \). Substitute this expression for \(a \) into the left-hand side of the last formula
\[e^{-mi\theta} \delta f = a^{m-2} h - a^{m-1} g. \] (4.11)
Multiplying this equation by a and using $a^m = e^{-im\theta} \delta$ again, we obtain one more equation

$$e^{-mi\theta} \delta g = a^{m-1}h - ae^{-mi\theta} \delta f. \quad (4.12)$$

The function $(\Lambda + D)u$ admits a holomorphic extension to \mathbb{D} for every $u \in C^\infty(\mathbb{S})$. Besides this, if functions u and v admit holomorphic extensions to \mathbb{D}, then the functions $u + v$, uv, and Du are also holomorphically extendible to \mathbb{D}. Therefore each of the functions f, g, h admits a holomorphic extension to \mathbb{D} as is seen from (4.5)–(4.6) and (4.9). Since a is a real function that does not vanish on a dense subset of the circle,

$$(\Lambda + D)(ae^{i\theta}), \ a\Lambda e^{i\theta}, \text{ and } D\delta \text{ are not identically zero.}$$

Hence f, g, and h are not identically zero.

We will use the following

Lemma 4.1. Let a real function $b \in C^\infty(\mathbb{S})$ be such that $b^s e^{is\theta}$ admits a holomorphic extension to \mathbb{D} for some integer $s \geq 1$. If b satisfies the equation

$$b^r \varphi^r = \psi^r \quad (4.13)$$

for some integer $r \geq 1$, where both functions $\varphi, \psi \in C(\mathbb{S})$ admit holomorphic extensions to \mathbb{D} and ψ is not identically zero, then the function b is of the form

$$b(\theta) = \hat{b}_0 + 2\Re(\hat{b}_1 e^{i\theta}) \quad \text{for some } \hat{b}_0 \in \mathbb{R} \text{ and } \hat{b}_1 \in \mathbb{C}. \quad (4.14)$$

The proof of the lemma is given at the end of the section.

Now, we consider separately the case of $m = 2$. In this case $\delta = e^{2i\theta} a^2$. Multiply equation (4.10) by $e^{2i\theta}$

$$ae^{2i\theta} g = -\delta f + e^{2i\theta} h.$$

Hypotheses of Lemma 4.1 are satisfied for $(b, \varphi, \psi, r, s) = (a, e^{2i\theta} g, -\delta f + e^{2i\theta} h, 1, m)$. Applying Lemma 4.1, we obtain that a is of form (1.5). We assume $m \geq 3$ for the rest of the proof.

Let us also consider separately the case of $m = 3$. We write system (4.10)–(4.12) in the matrix form

$$\begin{pmatrix} -g & -f \\ h & -g \\ -e^{-3i\theta} \delta f & h \end{pmatrix} \begin{pmatrix} a \\ a^2 \end{pmatrix} = \begin{pmatrix} -h \\ e^{-3i\theta} \delta f \\ e^{-3i\theta} \delta g \end{pmatrix}. \quad (4.15)$$

First, assume that $w_2 = g^2 + fh$ is not identically zero. Eliminating a^2 from first two equations of system (4.15), we obtain
\[a(e^{3i\theta}w_2) = \delta f^2 + e^{3i\theta}gh. \]

Hypotheses of Lemma 4.1 are satisfied for \((b, \varphi, \psi, r, s) = (a, e^{3i\theta}w_2, \delta f^2 + e^{3i\theta}gh, 1, m)\). Applying Lemma 4.1, we obtain (1.5).

Next, assume that \(w_2\) is identically zero but \(\beta = \delta f^2 + e^{i3\theta}gh\) is not identically zero. Eliminating \(a^2\) from first and third equations of system (4.15), we obtain

\[a\beta = -\delta fg + e^{3i\theta}h^2. \]

This again implies (1.5) with the help of Lemma 4.1.

Finally, consider the case when both \(\beta\) and \(w_2\) are identically zero, i.e., when

\[g^2 + fh = 0, \quad a^3 f^2 + gh = 0. \]

This implies

\[a^3 f^3 = g^3. \]

Applying Lemma 4.1 with \((b, \varphi, \psi, r, s) = (a, f, g, 3, m)\), we obtain (1.5).

We assume \(m \geq 4\) for the rest of the proof. Multiply equation (4.10) by \(a^\ell\)

\[a^\ell h = a^{\ell+2} f + a^{\ell+1} g \quad (0 \leq \ell \leq m - 1). \quad (4.16) \]

We combine equations (4.16) and (4.9)–(4.10) into the system

\[
\begin{align*}
-ga - fa^2 &= -h, \\
ha - ga^2 - fa^3 &= 0, \\
ha^2 - ga^3 - fa^4 &= 0, \\
&\quad \quad \quad \ldots \ldots \ldots \ldots \ldots \\
ha^{m-3} - ga^{m-2} - fa^{m-1} &= 0, \\
ha^{m-2} - ga^{m-1} &= e^{-im\theta} \delta f, \\
-e^{-im\theta} \delta f a + ha^{m-1} &= e^{-im\theta} \delta g.
\end{align*}
\]

Write the system in the matrix form

\[
M'_{m-1} \begin{pmatrix}
a \\
a^2 \\
\vdots \\
a^{m-1}
\end{pmatrix} = \begin{pmatrix}
-h \\
0 \\
\vdots \\
e^{-im\theta} \delta f \\
e^{-im\theta} \delta g
\end{pmatrix} \quad (4.17)
\]

Please cite this article in press as: A. Jollivet, V. Sharafutdinov, Steklov zeta-invariants and a compactness theorem for isospectral families of planar domains, J. Funct. Anal. (2018), https://doi.org/10.1016/j.jfa.2018.06.019
with the \(m \times (m - 1) \)-matrix that has the block structure

\[
M'_m = \begin{pmatrix}
M_{m-1} & \\
-e^{im\theta}f & 0 & \cdots & 0
\end{pmatrix},
\]

where \(M_{m-1} \) coincides, for \(n = m - 1 \), with the three-diagonal \(n \times n \)-matrix

\[
M_n = \begin{pmatrix}
-g & -f & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
h & -g & -f & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & h & -g & -f & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & h & -g & -f \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & h & -g & -f \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & h & -g
\end{pmatrix}.
\]

The matrix \(M_n \) is well defined for \(n \geq 2 \). Actually, we have already used \(M_2 \): system (4.15) is a partial case of (4.17).

Let \(w_n \) be the determinant of \(M_n \). Developing the determinant with respect to the first row, we obtain the recurrent formula

\[
w_n = -gw_{n-1} + hfw_{n-2} \quad \text{for} \quad n \geq 4. \tag{4.18}
\]

Additionally, for any \(n \geq 2 \),

\[
w_n \quad \text{has a holomorphic extension to} \quad \mathbb{D}
\]

since \(f, g, \) and \(h \) do have such extensions. Observe also that

\[
w_2 = g^2 + fh, \quad w_3 = -g(g^2 + 2fh). \tag{4.19}
\]

First, assume that \(w_{m-1} \) is not identically zero. Considering first \(m - 1 \) equations of system (4.17) and inverting the matrix \(M_{m-1} \), we obtain that \(a(e^{im\theta}w_{m-1}) \) has a holomorphic extension to \(\mathbb{D} \). Applying Lemma 4.1, we obtain (1.5).

Next, assume that both functions \(w_{m-1} \) and \(w_{m-2} \) are identically zero. With the help of (4.18), this implies \(w_j = 0 \) for every \(j \geq 2 \). In particular, \(w_2 = w_3 = 0 \) that gives, by (4.19), \(g^3 = 0 \). This contradicts our previous assumption on \(g \). Therefore we assume for the rest of the proof that \(w_{m-1} \equiv 0 \) but \(w_{m-2} \) is not identically zero.

Let \(M^{(1)}_{m-1} \) (respectively, \(M^{(2)}_{m-1} \)) be the \((m - 1) \times (m - 1) \)-matrix obtained from \(M'_{m-1} \) by deleting the \((m - 1) \)-th row (respectively, by deleting the first row). Denote the determinant of \(M^{(i)}_{m-1} \) by \(w^{(i)}_{m-1} \) \((i = 1, 2)\). A straightforward computation shows that
\[
\begin{align*}
 w_m^{(1)} &= hw_{m-2} - e^{-im\theta}f^{m-1}, \\
 w_m^{(2)} &= (-1)^{m-1}e^{-im\theta}fhw_{m-2} + h^{m-1}.
\end{align*}
\]

(4.20)

If either \(w_m^{(1)} \) or \(w_m^{(2)} \) is not identically zero, we can conclude as we did before: either \(a(e^{im\theta}w_m^{(1)}) \) or \(a(e^{im\theta}w_m^{(2)}) \) has a holomorphic extension to \(\mathbb{D} \), and then obtain (1.5) by Lemma 4.1.

Finally, assume that \(w_m^{(1)} \equiv w_m^{(2)} \equiv 0 \). Then (4.20) implies

\[
\delta^2 f^m = (-1)^m(e^{2i\theta}h)^m.
\]

Since \(\delta = a^m e^{im\theta} \), this can be written as

\[
(a^2)^m f^m = (-h)^m.
\]

Applying Lemma 4.1 with \((b, \varphi, \psi, r, s) = (a^2, f, -h, m, m)\), we obtain

\[
a^2(\theta) = \hat{c}_0 + 2\Re(\hat{c}_1 e^{i\theta}).
\]

In particular, \(e^{2i\theta}a^2 \) admits a holomorphic extension to \(\mathbb{D} \). Now, we can proceed in the same way as in the above-considered case of \(m = 2 \). Namely, multiply equation (4.10) by \(e^{2i\theta} \)

\[
a e^{2i\theta} g = e^{2i\theta}h - e^{2i\theta}a^2f.
\]

The right-hand side admits a holomorphic extension to \(\mathbb{D} \). Applying Lemma 4.1 with \((b, \varphi, \psi, r, s) = (a, e^{2i\theta}g, e^{2i\theta}h - e^{2i\theta}a^2f, 1, 2)\), we obtain (1.5).

Proof of Lemma 4.1. Taking the \(s \)th power of both sides of (4.13), we obtain \(b^s \varphi^s = \psi^s \) and \(b^s e^{i\ell s\theta} \) admits a holomorphic extension to \(\mathbb{D} \). The lemma is thus reduced to the case of \(r = s \).

Assume hypotheses of Lemma 4.1 to be satisfied with \(r = s \). Let \(\Delta \) be the holomorphic extension of \(b^\ell e^{i\ell\theta} \) to \(\mathbb{D} \). We assume that \(\Delta \) is not identically zero, otherwise \(b \equiv 0 \) and there is nothing to prove. Since \(b \) is a real function, we have

\[
e^{i\ell\theta} \Delta(e^{i\theta}) = e^{-i\ell\theta} \Delta(e^{i\theta}).
\]

(4.21)

With the help of the Cauchy theorem, we derive from the last equation

\[
\int_0^{2\pi} \Delta(e^{i\theta}) e^{-i(\ell + 2r)\theta} d\theta = \int_0^{2\pi} \Delta(e^{i\theta}) e^{-i\ell\theta} d\theta = \int_0^{2\pi} \Delta(e^{i\theta}) e^{i\ell\theta} d\theta = 0
\]

for \(\ell > 0 \). Therefore \(\Delta(z) \) is a polynomial of degree at most \(2r \). In addition, as is seen from (4.21), the holomorphic functions \(z^{-2r} \Delta(z) \) and \(\bar{\Delta}(1/z) \) defined on \(\mathbb{C} \setminus \{0\} \) agree on the circle. Hence by unique continuation principle.
\[\Delta(1/z) = z^{-2r} \Delta(z) \quad \text{for} \quad z \in \mathbb{C} \setminus \{0\}. \] (4.22)

If
\[\Delta(z) = \alpha_{2r} z^{2r} + \alpha_{2r-1} z^{2r-1} + \cdots + \alpha_1 z + \alpha_0, \] (4.23)

then equation (4.22) is equivalent to
\[\alpha_i = \alpha_{2r-i} \quad (0 \leq i \leq 2r). \] (4.24)

Let \(\Phi \) and \(\Psi \) be analytic extensions to \(D \) of functions \(\varphi \) and \(\psi \) respectively. By the uniqueness theorem for holomorphic functions, (4.13) implies
\[z^r \Psi^r(z) = \Delta(z) \varphi^r(z) \quad \text{for} \quad z \in D. \]

This implies: if \(z_0 \in D \) is a zero of order \(k \) for the function \(\Phi(z) \), then \(z_0 \) is zero of order \(\geq k \) for \(z \Psi(z) \). Therefore \(H(z) = z \Psi(z)/\Phi(z) \) is a well defined holomorphic function on \(D \) and
\[H^r(z) = \Delta(z) \quad \text{for} \quad z \in \mathbb{D}. \] (4.25)

First, assume \(\Delta \) to have a zero \(0 \neq z_0 \in \mathbb{C} \setminus S \). By (4.22), \(1/\bar{z}_0 \) is also a zero for \(\Delta \) of the same order. We can assume \(|z_0| < 1\), otherwise change roles of \(z_0 \) and \(1/\bar{z}_0 \). By (4.25), \(z_0 \) is a zero of \(H \). Therefore \(z_0 \) and \(1/\bar{z}_0 \) are zeros of order \(\geq r \) for \(\Delta = H^r \). Since \(\Delta \) is a polynomial of degree at most \(2r \), we see that
\[\Delta(z) = c^r (z - z_0)^r (z - \bar{z}_0^{-1})^r \] (4.26)

for some constant \(c \neq 0 \). Thus, \(z_0 \) is a simple zero of \(H \). Now, (4.25) and (4.26) imply that
\[\left| \frac{H(z)}{c(z - z_0)(z - \bar{z}_0^{-1})^r} \right| = 1 \quad \text{for} \quad z \in D. \]

By the maximum principle, there exists a constant \(c_1 \neq 0 \) such that
\[H(z) = c_1 (z - z_0)(z - \bar{z}_0^{-1}). \]

Now, we have
\[c_1^r (z - z_0)^r (z - \bar{z}_0^{-1})^r = z^r b^r(z) \quad \text{for} \quad z \in S. \]

Since the left-hand side does not vanish on \(S \), this implies the existence of a constant \(c_2 \in \mathbb{C} \) such that
Lemma 5.1. Given a positive function $a \in C^\infty(S)$, there exists a function $b \in C^\infty(S)$ which is conformally equivalent to a via a conformal transformation of the disk D and such that $\hat{b}_1 = 0$.

We will need one more Edward’s result [3, Propositions 3 and 4]:

Lemma 5.2. Let $a_n \in C^\infty(S)$ ($n = 1, 2, \ldots$) be a sequence of positive functions such that the Steklov spectrum $\text{Sp}(a_n)$ is independent of n. Assume additionally that $(\widehat{a_n})_1 = 0$ for every n. Then

$$|\langle \hat{a}_n \rangle_0| \leq C_0$$ \hspace{1cm} (5.1)
and
\[a_n(\theta) \geq c \quad (\theta \in \mathbb{R}) \quad (5.2) \]

with positive constants \(c\) and \(C_0\) independent of \(n\).

Let us remind that, for every real \(s\), the Hilbert space \(H^s(\mathbb{S})\) is the completion of \(C^\infty(\mathbb{S})\) with respect to the norm
\[\|u\|^2_{H^s(\mathbb{S})} = \sum_{n \in \mathbb{Z}} (1 + |n|^{2s})|\hat{u}_n|^2. \quad (5.3) \]

Lemma 5.3. Let \(a_n \in C^\infty(\mathbb{S}) \quad (n = 1, 2, \ldots)\) be a sequence of positive functions such that the Steklov spectrum \(\text{Sp}(a_n)\) is independent of \(n\). Assume additionally that \((\hat{a}_n)_1 = 0\) for every \(n\). Then the sequence is bounded in \(H^s(\mathbb{S})\) for every \(s \in \mathbb{R}\), i.e.,
\[\|a_n\|_{H^s(\mathbb{S})} \leq C_s \quad (5.4) \]

with a constant \(C_s\) independent of \(n\).

Proof. Zeta-invariants \(Z_m(a_n)\) are independent of \(n\). By Edward’s formula (1.3),
\[Z_1(a_n) = \frac{2}{3} \sum_{k \geq 2} (k^3 - k)|\hat{a}_n(k)|^2 \geq \frac{4}{9} \sum_{k \geq 2} (1 + k^3)|\hat{a}_n(k)|^2 = \frac{2}{9} \left(\|a_n\|^2_{H^{3/2}(\mathbb{S})} - |\hat{a}_n(0)|^2 \right). \]

We have used that \((\hat{a}_n)_1 = 0\). With the help of (5.1), this implies
\[\|a_n\|^2_{H^{3/2}(\mathbb{S})} \leq \frac{9}{2} Z_1(a_n) + |\hat{a}_n(0)|^2 \leq \frac{9}{2} Z_1(a_n) + C_0^2. \]

Thus, the sequence \(a_n\) is uniformly bounded in \(H^{3/2}(\mathbb{S})\). Since \(H^{3/2}(\mathbb{S}) \subset C(\mathbb{S})\), we have in particular \(a_n(\theta) \leq C \quad (\theta \in \mathbb{R})\) with a constant \(C\) independent of \(n\). Combine this with (5.2)
\[0 < c \leq a_n(\theta) \leq C \quad (\theta \in \mathbb{R}). \quad (5.5) \]

Now, we prove the statement: for every integer \(m \geq 1\), the sequence \(a_n^m \quad (n = 1, 2, \ldots)\) is uniformly bounded in \(H^{m+1/2}(\mathbb{S})\). Indeed, (5.5) gives
\[c^m \leq a_n^m(\theta) \leq C^m \quad (\theta \in \mathbb{R}). \quad (5.6) \]

This implies
\[|(\hat{a}_n^m)_k| = \left| \frac{1}{2\pi} \int_0^{2\pi} e^{-ik\theta} a_n^m(\theta) d\theta \right| \leq C^m. \quad (5.7) \]
By Theorem 1.1,
\[\sum_{k=m+1}^{\infty} k^{2m+1} |(\alpha_n^m)_k|^2 \leq c_m^{-1} Z_m(a_n). \]

Therefore
\[\sum_{k=m+1}^{\infty} (1 + k^{2m+1}) |(\alpha_n^m)_k|^2 \leq 2c_m^{-1} Z_m(a_n). \]

Estimates (5.7) and (5.8) imply
\[\|a_n^m\|_{H^{m+1/2}(S)}^2 = \sum_{|k| \leq m} (1 + |k|^{2m+1}) |(\alpha_n^m)_k|^2 + 2 \sum_{k \geq m+1} (1 + |k|^{2m+1}) |(\alpha_n^m)_k|^2 \]
\[\leq (2m + 1)(1 + m^{2m+1}) C^{2m} + 4c_m^{-1} Z_m(a_n). \]

Thus,
\[\|a_n^m\|_{H^{m+1/2}(S)} \leq C_m, \]
where \(C_m^2 = (2m + 1)(1 + m^{2m+1}) C^{2m} + 4c_m^{-1} Z_m(a_n) \) is independent of \(n \). Since \(\| \cdot \|_{H^m(S)} \leq \| \cdot \|_{H^{m+1/2}(S)} \), we have
\[\|a_n^m\|_{H^m(S)} \leq C_m \quad (m = 1, 2, \ldots). \] (5.9)

For an integer \(s = m \), norm (5.3) can be equivalently written as
\[\|u\|_{H^m(S)}^2 = \sum_{k=0}^{m} \|D^k u\|_{L^2(S)}^2. \]

On using this definition and estimates (5.5), one easily proves the equivalence of the norms \(\|a_n\|_{H^m(S)} \) and \(\|\log(a_n)\|_{H^m(S)} \), i.e., the validity of estimates
\[\frac{1}{C_m'} \|a_n\|_{H^m(S)} \leq \|\log(a_n)\|_{H^m(S)} \leq C_m' \|a_n\|_{H^m(S)} \] (5.10)
with a constant \(C_m' \) independent of \(n \). In view of (5.6), the same is true for \(a_n^m \)
\[\frac{1}{C_m''} \|a_n^m\|_{H^m(S)} \leq \|\log(a_n^m)\|_{H^m(S)} \leq C_m'' \|a_n^m\|_{H^m(S)}. \] (5.11)

Finally, we prove the uniform boundedness of the sequence \(a_n \) in \(H^m(S) \). Since
\(\log(a_n) = \frac{1}{m} \log(a_n^m) \), estimates (5.9)–(5.11) give
\[\|a_n\|_{H^m(S)} \leq C'_m \| \log(a_n)\|_{H^m(S)} = \frac{C'_m}{m} \| \log(a_n^m)\|_{H^m(S)} \leq \frac{C_m C'_m}{m} \|a_n^m\|_{H^m(S)} \leq \frac{C_m C'_m C''_m}{m}. \]

Thus, the sequence \(a_n\) \((n = 1, 2, \ldots)\) is uniformly bounded in \(H^m(S)\) for every integer \(m\) and hence in \(H^s(S)\) for every real \(s\). \(\square\)

Proof of Theorem 1.3. Let a sequence \(a_n \in C^\infty(S)\) \((n = 1, 2, \ldots)\) of positive functions satisfy hypotheses of Theorem 1.3. With the help of Lemma 5.1, we can assume without loss of generality that \((a_n)_1 = 0\) for every \(n\). Therefore estimates (5.1) and (5.2) are valid as well as estimate (5.4) is valid for every \(s \in \mathbb{R}\). Since the embedding \(H^1(S) \subset C(S)\) is compact, we can choose a subsequence converging in \(C(S)\). The limit function \(a \in C(S)\) satisfies

\[a(\theta) \geq c \quad (\theta \in \mathbb{R}) \]

as follows from (5.2). Since the embedding \(H^2(S) \subset H^1(S)\) is compact, we can choose a sub-subsequence converging to \(a\) in \(H^1(S)\), and so on. On using the classical trick of choosing the diagonal sequence, we obtain a subsequence \(a_{n_k}\) \((k = 1, 2, \ldots)\) which converges to \(a\) in \(H^s(S)\) for every \(s \in \mathbb{R}\). In other words, \(a_{n_k}\) converges to \(a\) in \(C^\infty(S)\). In particular, \(a \in C^\infty(S)\). \(\square\)

Finally, we give an interpretation of Theorem 1.3 in terms of Steklov isospectral families of planar domains. Let \(\Omega_n\) \((n = 1, 2, \ldots)\) be a sequence of smooth bounded simply connected (possibly multisheet) planar domains. We say that the sequence converges in the \(C_{hot}(\mathbb{D})\)-topology if, for every \(n\), there exists a biholomorphism \(\Phi_n : \mathbb{D} \rightarrow \Omega_n\) such that the sequence \(\hat{\Phi}_n\) converges to some \(\Phi : \mathbb{D} \rightarrow \mathbb{R}^2\) in the \(C^\infty(\mathbb{D})\)-topology; the set \(\Phi(\mathbb{D})\) is the limit of the sequence.

Theorem 5.4. Let \(\Omega_n\) \((n = 1, 2, \ldots)\) be a sequence of smooth bounded simply connected (possibly multisheet) planar domains. Assume that the Steklov spectrum \(Sp(\Omega_n)\) is independent of \(n\). Then there exists a subsequence \(\Omega_{n_k}\) \((k = 1, 2, \ldots)\) such that, for appropriately chosen isometries \(I_k : \mathbb{R}^2 \rightarrow \mathbb{R}^2\), the sequence \(I_k(\Omega_{n_k})\) converges in the \(C_{hot}(\mathbb{D})\)-topology to some smooth bounded simply connected multisheet planar domain.

Proof. By the Riemann theorem, there exists a biholomorphism \(\Phi_n : \mathbb{D} \rightarrow \Omega_n\) for every \(n\). Define positive functions \(a_n \in C^\infty(S)\) by \(a_n(z) = |\Phi'_n(z)|^{-1}\) for \(z \in S\). The Steklov spectrum \(Sp(a_n) = Sp(\Omega_n)\) is independent of \(n\). By Lemma 5.1, for every \(n\), there exists a conformal transformation \(\Psi_n : \mathbb{D} \rightarrow \mathbb{D}\) such that the function \(b_n(z) = a_n(\Psi_n(z))|\Psi'_n(z)|^{-1}\) satisfies \((\tilde{b_n})_1 = 0\). Then \(b_n(z) = |\Phi'_n(z)|^{-1}\) \((z \in S)\) for the diffeomorphism \(\tilde{\Phi}_n = \Phi_n \circ \Psi_n : \mathbb{D} \rightarrow \Omega_n\).

All \(\Phi_n\) are biholomorphisms. In order to simplify notations, we assume without loss of generality that all \(\Psi_n\) are identities, i.e., that \(\tilde{\Phi}_n = \Phi_n\).

Please cite this article in press as: A. Jollivet, V. Sharafutdinov, Steklov zeta-invariants and a compactness theorem for isospectral families of planar domains, J. Funct. Anal. (2018), https://doi.org/10.1016/j.jfa.2018.06.019
Thus, for every \(n \), we have a biholomorphism \(\Phi_n : \mathbb{D} \to \Omega_n \) such that the function \(a_n(z) = |\Phi'_n(z)|^{-1} \) (\(z \in S \)) satisfies \((a_n)_1 = 0 \) and \(\text{Sp}(a_n) \) is independent of \(n \).

By Lemma 5.2 (see also (5.5)),

\[
0 < c \leq a_n(\theta) \leq C \quad (\theta \in \mathbb{R}) \tag{5.12}
\]

with constants \(c \) and \(C \) independent of \(n \). By Lemma 5.3, the sequence \(a_n \) \((n = 1, 2, \ldots) \) contains a subsequence converging in \(C^\infty(S) \). Without loss of generality, we assume that the sequence \(a_n \) itself to converge in \(C^\infty(S) \) to some function \(a \in C^\infty(S) \). The limit function also satisfies

\[
c \leq a(\theta) \leq C \quad (\theta \in \mathbb{R}) \tag{5.13}
\]

as follows from (5.12).

For every \(n \), the function \(\Phi_n \) is holomorphic on \(\overset{\circ}{\mathbb{D}} \), continuous with all its derivatives on \(\mathbb{D} \), and satisfies the boundary condition

\[
|\Phi'_n(z)| = a^{-1}_n(z) \quad (z \in S) \nonumber.
\]

The derivative \(\Phi'_n(z) \) does not vanish in \(\mathbb{D} \) because \(\Phi_n \) is a biholomorphism. Therefore \(\log \Phi'_n(z) \) is a well defined holomorphic function on \(\overset{\circ}{\mathbb{D}} \) whose real part \(u_n(z) = \text{Re}(\log \Phi'_n(z)) \) solves the Dirichlet problem

\[
\Delta u_n = 0 \quad \text{in} \quad \overset{\circ}{\mathbb{D}}, \quad u_n|_S = \log(a^{-1}_n). \nonumber
\]

The sequence \(a^{-1}_n \) converges to \(a^{-1} \) in \(C^\infty(S) \). Applying standard Sobolev stability estimates for an elliptic boundary value problem, we see that the sequence \(u_n \) converges in the \(C^\infty(\mathbb{D}) \)-topology to a function \(u \in C^\infty(\mathbb{D}) \) which solves the Dirichlet problem

\[
\Delta u = 0 \quad \text{in} \quad \overset{\circ}{\mathbb{D}}, \quad u|_S = \log(a^{-1}). \nonumber
\]

The function \(u \) satisfies

\[
-\log(C) \leq u(z) \leq -\log(c) \quad (z \in \mathbb{D}) \tag{5.14}
\]

as follows from (5.13) with the help of the maximum principle for harmonic functions.

Now, we address the equation

\[
\text{Re}(\log \Phi'_n(z)) = u_n(z). \tag{5.15}
\]

A holomorphic function \(f(z) \) is defined by its real part uniquely up to a pure imaginary constant. Moreover, the dependence of \(f \) on \(\text{Re}(f) \) is continuous in corresponding Sobolev
Proof. Denote by P_0 the bounded operator on $L^2(S)$ defined as the orthogonal projector onto the one-dimensional subspace of constant functions: $P_0(f) = \hat{f}_0$ for $f \in L^2(S)$. Then $\Lambda + P_0$ is a first order elliptic positive pseudodifferential operator. For every $\mu \in \mathbb{R}$, the power $(\Lambda + P_0)^\mu$ is a well defined pseudodifferential operator of order μ.

Let μ be the order of the pseudodifferential operator A. Then $A(\Lambda + P_0)^{-\mu}$ is a bounded operator on $L^2(S)$ and $(\Lambda + P_0)^\mu B$ is a smoothing operator. Then by the classical property of the trace [14, Theorem 3.1]

$$\text{Tr}[AB] = \text{Tr}[A(\Lambda + P_0)^{-\mu}(\Lambda + P_0)^\mu B] = \text{Tr}[(\Lambda + P_0)^\mu BA(\Lambda + P_0)^{-\mu}]$$.
We compute the right-hand side on using the trigonometric basis: \((\Lambda + P_0)e^{in\theta} = \max(|n|, 1)e^{in\theta}\) and

\[
\langle (\Lambda + P_0)^{\mu}BA(\Lambda + P_0)^{-\mu}e^{in\theta}, e^{in\theta} \rangle = \langle BAe^{in\theta}, e^{in\theta} \rangle.
\]

Two last formulas give \(\text{Tr}[AB] = \text{Tr}[(\Lambda + P_0)^{\mu}BA(\Lambda + P_0)^{-\mu}] = \text{Tr}[BA]. \) ⊓⊔

Proof of Lemma 2.2. It suffices to prove that

\[
\text{Tr}[(L^{j_1}H)(L^{j_2}H) \ldots (L^{j_{2s}}H) - (LH)^{2m}] = \text{Tr}[(L^{j_2}H) \ldots (L^{j_{2s}}H)(L^{j_1}H) - (LH)^{2m}]
\]

(A.1)

for a sequence of non-negative integers \((j_1, \ldots, j_{2s})\) satisfying \(j_1 + \cdots + j_{2s} = 2m\). We prove this by induction in \(s\).

First let \(s = 1\) and \(0 \leq j \leq 2m\). Then

\[
\text{Tr}(L^jHL^{2m-j}H - (LH)^{2m}) = \text{Tr}(L^j[H, L^{2m-j}]H) + \text{Tr}(L^{2m} - (LH)^{2m}).
\]

(A.2)

Applying Lemma A.1 with \(A = L^j, B = [H, L^{2m-j}]H\) and using \(H^2 = I\), we have

\[
\text{Tr}(L^j[H, L^{2m-j}]H) = \text{Tr}([H, L^{2m-j}]HL^j) = \text{Tr}(HL^{2m-j}HL^j - L^{2m}) = \text{Tr}(L^{2m-j}HL^jH - L^{2m}).
\]

Substituting this value into (A.2), we obtain (A.1) for \(s = 1\).

Assume (A.1) to be valid for some \(s \geq 1\). Let \(j_1 + \cdots + j_{2s+2} = 2m\). Then

\[
\text{Tr}\left((L^{j_1}H) \ldots (L^{j_{2s+2}}H) - (LH)^{2m}\right) = \text{Tr}\left((L^{j_1}H) \ldots (L^{j_{2s}}H) [L^{j_{2s+1}}, H]L^{j_{2s+2}}H\right)
\]

\[
+ \text{Tr}\left((L^{j_1}H) \ldots (L^{j_{2s-1}}H)L^{j_{2s}+j_{2s+1}+j_{2s+2}}H - (LH)^{2m}\right).
\]

(A.3)

Applying Lemma A.1 with \(A = L^{j_1}H\) and \(B = (L^{j_2}H) \ldots (L^{j_{2s}}H)[L^{j_{2s+1}}, H]L^{j_{2s+2}}H\), we obtain

\[
\text{Tr}\left((L^{j_1}H) \ldots (L^{j_{2s}}H) [L^{j_{2s+1}}, H]L^{j_{2s+2}}H\right)
\]

\[
= \text{Tr}\left((L^{j_2}H) \ldots (L^{j_{2s}}H) [L^{j_{2s+1}}, H]L^{j_{2s+2}}H(L^{j_1}H)\right)
\]

\[
= \text{Tr}\left((L^{j_2}H) \ldots (L^{j_{2s+2}}H)(L^{j_1}H) - (L^{j_2}H) \ldots (L^{j_{2s+1}}H)L^{j_{2s}+j_{2s+1}+j_{2s+2}}H(L^{j_1}H)\right).
\]

(A.4)

By the induction hypothesis,
\[
\text{Tr} \left((L^1 H) \cdots (L^{j2-1} H) L^{j2+j2+1+j2+2} H - (LH)^{2m} \right) = \text{Tr} \left((L^j H) \cdots (L^{j2-1} H) L^{j2+j2+1+j2+2} H(L^1 H) - (LH)^{2m} \right).
\] (A.5)

Substituting (A.4) and (A.5) into (A.3), we obtain

\[
\text{Tr} \left[(L^1 H) \cdots (L^{j2+2} H) - (LH)^{2m} \right] = \text{Tr} \left[(L^j H) \cdots (L^{j2+2} H)(L^1 H) - (LH)^{2m} \right].
\]

\[\square\]

Proof of Lemma 5.1 (inspired by [15] and [16]). Let \(a \in C^\infty(\mathbb{S}) \) be a positive function. For \(r \in [0, 1) \) and \(\alpha \in \mathbb{R} \), let \(b_{r,\alpha} \in C^\infty(\mathbb{S}) \) be the function conformally equivalent to \(a \) via the conformal transformation \(\Phi_{r,\alpha} : \mathbb{D} \to \mathbb{D} \) defined by

\[
\Phi_{r,\alpha}(z) = e^{i\alpha} \frac{z - r}{1 - rz},
\]
i.e.,

\[
b_{r,\alpha}(z) = a(\Phi_{r,\alpha}(z))|\Phi_{r,\alpha}'(z)|^{-1} = a \left(e^{i\alpha} \frac{z - r}{1 - rz} \right) \frac{|1 - rz|^2}{1 - r^2} (z \in \mathbb{S}).
\] (A.6)

Define the function \(H \in C^\infty([0, 1) \times \mathbb{R}) \) by

\[
H(r, \alpha) = (1 - r^2)e^{-i\alpha} (b_{r,\alpha})_1 = \frac{1}{2\pi} \int_0^{2\pi} e^{-i(\alpha + \theta)} a \left(e^{i\alpha} \frac{e^{i\theta} - r}{1 - re^{i\theta}} \right) |1 - re^{i\theta}|^2 d\theta.
\] (A.7)

Observe that \(H(0, \alpha) = \tilde{a}_1 \) for every \(\alpha \). Therefore \(H \) can be considered as the continuous function \(H : \mathbb{D} \to \mathbb{C} \) such that \(H(re^{i\alpha}) = H(r, \alpha) \).

The integrand in (A.7) is bounded uniformly in \((r, \alpha, \theta) \in [0, 1) \times \mathbb{R} \times \mathbb{R} \) and

\[
a \left(e^{i\alpha} \frac{e^{i\theta} - r}{1 - re^{i\theta}} \right) \to a(-e^{i\alpha}) \quad \text{as} \quad r \to 1 - 0.
\]

Therefore

\[
H(r, \alpha) = a(-e^{i\alpha}) e^{-i\alpha} \frac{1}{2\pi} \int_0^{2\pi} e^{-i\theta} |1 - e^{i\theta}|^2 d\theta + E(r, \alpha),
\] (A.8)

where the error term \(E(r, \alpha) \to 0 \) uniformly in \(\alpha \) as \(r \to 1 - 0 \). Substituting the value

\[
\frac{1}{2\pi} \int_0^{2\pi} e^{-i\theta} |1 - e^{i\theta}|^2 d\theta = \frac{1}{2\pi} \int_0^{2\pi} e^{-i\theta}(2 - e^{i\theta} - e^{-i\theta}) d\theta = -1
\]
into (A.8), we obtain

$$H(r, \alpha) = -a(-e^{i\alpha})e^{-i\alpha} + E(r, \alpha).$$

(A.9)

Since a is a positive function, (A.9) implies that the closed curve $\alpha \mapsto H(r, \alpha)$ ($0 \leq \alpha \leq 2\pi$) goes around 0 if $r \in (0, 1)$ is sufficiently close to 1. Therefore there exists $(r_0, \alpha_0) \in [0, 1) \times \mathbb{R}$ such that $H(r_0, \alpha_0) = 0$. Together with (A.7), this gives $(b_{r_0, \alpha_0})_1 = 0$. □

References