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1 Introduction

In their paper Mas-Colell and Richard [11] (cf., Aliprantis [1]) proved the exis-
tence of equilibria in vector lattices which are not necessarily locally solid. They
assumed that the commodity space is a vector lattice endowed with a locally
convex topology such that the positive cone is closed. They also required the
topological dual of this space be a sub-lattice of it’s order dual. This enabled
them to extend the seminal result of Mas-Colell [10] to a broader set of models,
e.g., Huang & Kreps [8] and Jones [9]. In their proof, Mas-Colell and Richard [11]
use an extension of well known Negishi approach. They also consider individual
supporting prices for weakly Pareto allocations and their supremum, that allows
them to avoid uniform continuity of lattice operations in using the decomposition
property of vector lattices. As in earlier Mas-Colell [10], the quasi-equilibrium
existence proof is based on fixed-point argument in the utility space (later Yan-
nelis and Zame [14] generalized the Mas-Colell theorem from [10] to unordered
preferences, while the commodity space is a Banach lattice).

The purpose of this paper is to extend Mas-Colell-Richard’s theorem to the
case of unordered preferences. It is clear that the direct application of Negishi
approach is not suitable in this setting since it requires the preferences be rep-
resentable by utility functions. Our proof modifies the Negishi approach, and as
in Bewley [6], Yannelis-Zame [14], and Podczeck [12] our result is obtained by
considering a direct set of truncations of the economy. The result is proved un-
der specific assumption of “uniform properness” of preferences, which is slightly
weaker than Yannelis and Zame’s “uniform properness” (see [14]). In a transitive
context, it is also slightly weaker than Mas-Colell’s uniform properness. Related
results can be found in Podczeck [12] who proves the existence of equilibrium
in Mas-Colell and Richard’s setting without ordered preferences. Also related
results of Tourky [13] and Deghdak-Florenzano [7]. They prove core equivalence
theorems in our setting. Their results, when combined with an existence theorem
for Edgeworth equilibria, also imply the existence of Walrasian equilibria with
unordered preferences. Notice, however, that our properness notion is different
from the ones used in Podczeck [12] and in Tourky [13]. Moreover, Tourky [13] al-
lows for more general consumption sets than the positive cone of the commodity
space.

Riesz spaces were first introduced into general equilibrium theory in the paper
of Aliprantis-Brown [2]. The lattice structure of the commodity space was then
used in the paper of Mas-Colell [10] to prove his remarkable theorem on the
existence of equilibrium. The basic structure of the infinite dimensional analysis
in a context of economic model was developed in [3]. For a general overview of
the literature the reader can consult the book of Aliprantis-Brown-Burkinshaw
[4].

The paper is organized as follows. In Section 2, we describe the model and
state the main result. Section 3 is devoted to the strategy of proof and to
auxiliary results. The fourth section contains the detailed proofs.
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2 The exchange model and the main result

We consider a typical exchange economy in which the commodity space L is a
partially ordered vector space equipped with a Hausdorff, locally convex topology
τ . Let N = {1, ..., n} denote the set of economic agents, whose consumption sets
coincide with the positive cone of the space L+ = {x ∈ L | x ≥ 0}. The agent’s
preferences are described by point-to-set mappings Pi : L+ → L+, so that Pi(xi)
denotes the set of all consumption bundles strictly preferred by the i-th agent
to the bundle xi. We also will use the notation yiÂ

i
xi which is equivalent to

yi ∈ Pi(xi). Each consumer i is endowed with an initial endowment ωi ∈ L+.
We require the prices π to be chosen in the topological dual of L, denoted by L′.
Thus, the model under study is a triplet

E = (N, 〈L, L′〉, {Pi(·), ωi}i∈N).

Let ω =
∑

N ωi. In what follows, we assume ω 6= 0. The other assumptions
on the economy are divided into two groups. The first one consists of

Structural Assumptions (SA)

(i) L is a linear vector lattice (or Riesz space) ;

(ii) L+ is closed in the τ -topology of L ;

(iii) L′ is a sublattice of the order dual to L;

(iv) the order interval [0, ω]1 is σ(L,L′)2 - compact.

It is worth noticing that (i) and (ii) do not imply that the lattice operations
x ∨ y, x ∧ y, x, y ∈ L are continuous with respect to topology τ . In other words,
we do not assume the topology τ to be locally solid.

If τ were locally solid, then requirements (ii), (iii) would be automatically
valid. Since we avoid this hypothesis, we need to require them directly. Almost
the same can be said about (iv) : if the topology of the space guarantees that
every order interval is σ(L,L′)-compact (for example, if L is Dedekind complete
and σ(L, L′)-order continuous, see [4]), then we avoid this assumption, otherwise
not. For more specific explanations and references, the reader is referred to [4].

The second group of assumptions consists of the properties of agents’ char-
acteristics. All these assumptions are well known in the literature and only one
of them requires special explanations, the so-called uniform properness of pref-
erences. In this paper, properness will be defined as follows.

Definition 2.1 The preference P (·) is said to be ω–uniformly τ -proper on Y ⊂
L+ if there exists a τ -neighborhood V of the origin such that

y − αω + z ∈ conv P (y)3, y ∈ Y, α > 0 =⇒ z /∈ αV.

1The notation [a, b] denotes the order interval, i.e. [a, b] = {c ∈ L | a ≤ c ≤ b}.
2σ(L,L′) denotes weak topology on L.
3In this paper, conv A denotes the convex hull of the set A, clA is its closure and \ is set

for the set-theoretical difference.

3



Originally a slightly stronger notion was introduced by Mas-Colell [10], in order to
overcome the emptiness of the interior of the positive cone for many interesting
commodity spaces. The Mas-Colell definition was extended by Yannelis and
Zame [14] to unordered preferences.

Assumptions on Preferences (PA)

For each i ∈ N ,
(i) upper semicontinuity :

Pi(x) is τ − open in L+ for each x ∈ L+;

(ii) lower semicontinuity : for each x ∈ L+, the set

P−1
i (x) = {y ∈ L+ | x ∈ Pi(y)} is σ(L,L′)− open in L+;

(iii) weak convexity, irreflexivity and local nonsatiation : for each x ∈ [0, ω]

x ∈ cl(conv Pi(x))\conv Pi(x);

(iv) monotonicity : for each x ∈ L+

Pi(x) + L+ ⊂ cl(conv Pi(x));

(v) Pi(·) is ω–uniformly τ -proper on [0, ω].

Note that there is no loss of generality to assume in (v) that for each i, the
individual properness τ - neighborhood of the origin Vi is convex and circled (i.e.
Vi = −Vi).

Let
χ = {x ∈ Ln

+ |
∑

N

xi = ω}

be the set of feasible allocations.

Definition 2.2 A couple (x, π) is said to be a quasi-equilibrium if x ∈ χ, π ∈
L′+, π(ω) > 0 and for each i ∈ N , it holds:

〈Pi(xi), π〉 ≥ π(xi) = π(ωi).
4 (1)

The quasi-equilibrium is an equilibrium if the inequalities in (1) are strict.

The main result of this paper is

Theorem 2.1 If E satisfies structural assumptions SA and if agents’ preferences
satisfy PA, then there exists a quasi-equilibrium (x, π).

Theorem 2.1 will be first proved under an additional assumption on individual
initial endowments in the following preliminary result.

4〈A, π〉 denotes the set {〈a, π〉 | a ∈ A} and A ≥ b means a ≥ b for all a ∈ A.
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Theorem 2.2 Under the same assumptions and if

∃ h > 0 such that ωi ≥ hω, i ∈ N (2)

then there exists a quasi-equilibrium (x, π). Moreover, π(ω) > 0 and π = ∨i∈Npi

with for each i ∈ N , 〈pi, ω + V 〉 ≥ 0, where V =
⋂

i∈N Vi and Vi is an open,
convex and circled neighborhood of zero taken from the ω–uniform τ -properness
condition for i-th agent’s preferences.

3 Strategy of proof, auxiliary results and dis-

cussion

Mas-Colell and Richard suggested the attractive idea of representing the equilib-
rium price as the supremum of “individual” supporting prices. They used such
an approach in their Lemma 1 and Proposition. They also constructed compact
sets, containing “individual” supporting prices for any given weak Pareto-optimal
allocation, using explicitly the ω-uniform properness of preferences. We are bor-
rowing these ideas but applying them in a different way. Our method is based
on a direct usage of mappings which define the sets of continuous functionals,
supporting all the i-th agent preferred points to a given i-th consumption bundle.

Let xi 6= 0, xi ∈ L+ and λi > 0 be fixed. If Vi is an open, convex, circled
neighborhood of zero taken from the definition of the uniform properness, let

Γi(xi) = conv Pi(xi) + K, (3)

where
K = {α(ω + V ) | α > 0} & V =

⋂

i∈N

Vi.

The main properties of the mapping Γi(.) are summarized in the following
easy proposition.

Proposition 3.1 If Pi : L+ → L+ satisfies PA then
(i) Γi(x) is open, convex and nonempty at each x ∈ [0, ω];
(ii) if x ∈ [0, ω] then x ∈ cl(Γi(x)

⋂
L+) and x /∈ Γi(x);

(iii) conv Pi(x) ⊂ cl(Γi(x)
⋂

L+);
(iv) cl(Γi(x)) + L+ ⊂ cl(Γi(x));
(v) Γ−1

i (y) is σ(L,L′)-open in L+ for every y ∈ L.

Now for xi ∈ [0, ω] and real λi > 0, let us define the mappings of “individual
supporting prices” by

Πi(xi, λi) = {pi ∈ L′+ | 〈Γi(xi), pi〉 ≥ λi = pi(xi)}. (4)

The mappings, defined by (4), will play a crucial role below. Indeed, by (3), (4)
we have

| 〈pi, V 〉 |≤ 〈pi, ω〉, pi ∈ Πi(xi, λi),
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which, under the additional condition xi ≥ εω for some ε > 0, implies, by
Alaoglu’s theorem, the compactness of Πi(xi, λi).

We also would like the values λi to satisfy

λi = (∨j∈N pj)(ωi) = sup
xj≥0,

∑
xj=ωi

∑
pj(xj).

Then following Mas-Colell-Richard’s arguments (see Proposition from [11]) we
would state that π = ∨pj is an equilibrium price. However any attempt to
construct a point-to-set mapping, the fixed points of which satisfy the previous
conditions, encounters many problems.

The first one is that Πi(·) may have an unclosed graph with respect to the
weak∗ topology σ(L′, L), due to the lack of joint continuity of the inner product
〈p, x〉 = p(x), p ∈ L′, x ∈ L. For this reason, we will confine in a first step our
considerations to finite-dimensional subspaces of the commodity space.

Another one is that each Πi(xi, λi), being defined on a convex compact do-
main, should take values in a convex compact set. The previous ideas are sum-
marized in the following lemma and in the subsequent constructions.

Lemma 3.1 Let assumptions PA (i)-(v) hold for some preference mapping Pi(·)
and Y be a subset of some finite-dimensional subspace of L such that Y ⊂ [0, ω].
Then

(i) for each x ∈ [0, ω] and λ > 0, if x ≥ εω for some ε > 0 then the set
Πi(x, λ), constructed by (3) and (4), is nonempty, convex and σ(L′, L)-compact,

(ii) the map (x, λ) → Πi(x, λ) with the domain Y × [α, β] for some real
β > α > 0 has a closed graph in Y × [α, β] × L′+ with respect to the σ(L′, L)-
topology on L′+.

Suppose now that for some fixed real h > 0, we have hω ≤ ωi for all i. Take
a fixed ε such that h > ε > 0. Fix also L, a finite dimensional subspace of L
containing all ωi. Given L and ε, we define the following sets. First,

Ψε = {p ∈ L′+ | |〈p, V 〉| ≤
1

ε
, p(ω) ≥ h}.

By Alaoglu’s theorem, Ψε is σ(L′, L) - compact. It is also clear that Ψn
ε is convex,

σ(L′n, Ln)-compact and nonempty provided ε > 0 is small enough5.
For allocations, we consider:

XL
ε = {(x1, ..., xn) ∈ Ln

+ | εω ≤ xi ≤ ω, i ∈ N,
∑

i∈N

xi = ω}

and note that (ω1, . . . , ωn) ∈ XL
ε .

The domain of variables λi is defined as follows

∆ = {(λ1, ..., λn) ∈ Rn
+ |

∑

N

λi ≤ 1, λi ≥ h, i ∈ N},

5From Lemma 3.1 (i), we have Πi(ω, h) 6= ∅. Take ε ≤ 1
h and to check the non-emptyness

observe that Πi(ω, h) ⊂ Ψε.
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this set being nonempty for h ≤ 1
n
. Then, assembling specified sets, we have the

nonempty convex compact set

ZL
ε = XL

ε ×∆×Ψn
ε .

We now construct a point-to-set mapping from ZL
ε into itself. This mapping is

represented as a product of three maps. One of them was almost specified above.
It is

s : (x, λ) −→ ∏

i∈N

Πi (xi, λi).

The second map is specified by

rLε : q = (p1, ..., pn) −→ argmax
x′∈XL

ε

q(x′).

The third mapping has a more complex construction. Let

X i
L = {x′ ∈ Ln

+ |
∑

j∈N

x′j = ωi}, XL = {x′ ∈ Ln
+ |

∑

j∈N

x′j = ω}.

Determine
λ′Li (q) = max

x′∈Xi
L

q(x′), λLω(q) = max
x′∈XL

q(x′), (5)

then the required map

λL : q = (p1, ..., pn) −→ (λL1 (q), ..., λLn(q)) = λL(q)

is specified by λLi (q) = λ′Li (q)/λLω(q), i ∈ N . The resulting mapping is the
following

ϕLε : (x, λ, q) −→ rLε (q)× {λL (q)} × s (x, λ).

Lemma 3.2 Assume h ≤ 1/n. Then for every ε such that 0 < ε < h, the set
ZL

ε is nonempty convex and compact and ϕLε : ZL
ε −→ 2L

n
+ × 2Rn

+ × 2(L′+)n

has a
closed graph with nonempty compact convex values in ZL

ε . Hence ϕLε has a fixed
point.

Keep L fixed and denote by (xLε , λLε , qLε ) a current fixed point of ϕLε . As it is
observed in the following lemma, for ε > 0 small enough, all fixed points of this
map may be included into a common compact set.

Lemma 3.3 Assume ε ∈ (0, 1/2n]. Then all fixed points (xLε , λLε , qLε ) of ϕLε (.)
can be included in some common compact set which does not depend on ε. More-
over for each such point, if qLε = (p1, . . . , pn) then

2 ≥ pi(ω) ≥ h, | 〈pi, V 〉 |≤ 2.

It allows us to let ε → 0 and to pass to the limits. As a result, we then have
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Lemma 3.4 (MAIN AUXILIARY LEMMA). Assume that ωi ≥ h · ω for
some h > 0 and let L ⊂ L be a finite-dimensional subspace, such that ωi ∈
L, i ∈ N . Then there exists a feasible allocation xL = (xL1 , ..., xLn) ∈ Ln

+, prices
qL = (pL1 , ..., pLn) ∈ (L′+)n, and numbers λLi ≥ h, i ∈ N ,

∑
N λLi ≤ 1, such that

for each i ∈ N the following conditions hold :

(i) 〈pLi , Γi(x
L
i )〉 ≥ pLi (xLi ) = λLi , Γi(x

L
i ) = conv Pi(x

L
i ) + {α(ω + V ) | α > 0};

(ii) pLi ∈ {p ∈ L′+ | |〈p, V 〉| ≤ 2, h ≤ pω ≤ 2};
(iii) λLi ≥ max {qL(y) | y ∈ Ln

+,
∑

i∈N yj = ωi}.
We prove Theorem 2.2 using a limiting process on the couples (xL, qL)L⊂L,

obtained in the previous lemma. A second limiting process letting h → 0 for
an appropriate approximation ωh

i of initial endowments ωi, i ∈ N allows us to
prove Theorem 2.1.

It is worth noticing an observation used in the proof. If q = (p1, ..., pn) is a
bundle of limit individual supporting prices, then all variables zi ∈ L+ satisfying

q(zi) = max
xj≥0,

∑
xj=ωi,

∑
pj(xj) = (∨pj)(ωi)

may be included into a common finite-dimensional subspace that gives us an
opportunity to realize crucial estimates and to use the equilibrium properties of
the couples (xL, qL)L⊂L.

4 Proofs

Proof of Proposition 3.1. (i)–(iv) are immediate from the definition of Γi and
assumptions PA on preferences. To verify (v), choose any x ∈ L+, y ∈ L such that
y ∈ Γi(x) ⇐⇒ x ∈ Γ−1

i (y). By definition (see (3)), we can write y =
∑m

r=1 trzr+h
with h ∈ K, zr ∈ Pi(x) and tr ≥ 0, r = 1, . . .m,

∑m
r=1 tr = 1. Since due

to PA(ii) the set P−1
i (zr) is a σ(L,L′)-open neighborhood of x in L+, the set

Vx =
⋂r=m

r=1 P−1
i (zr) is also a σ(L,L′)-open neighborhood of x in L+. Then

x′ ∈ Vx =⇒ zr ∈ Pi(x
′), r = 1, . . . , m =⇒ y ∈ Γi(x

′), i.e. Vx ⊂ Γ−1
i (y). Since x

was chosen arbitrary, we see that Γ−1
i (y) is the neighborhood of each own point

and therefore is σ(L,L′)-open in L+. Q.E.D.

Proof of Lemma 3.1. To check (i), we first show that Πi(x, λ) 6= ∅. Observe that
due to PA(iii),(v), we have

(x−K)
⋂

convPi(x) = ∅.
Due to Proposition 3.1 (i), applying the first separation theorem, we find nonzero
p ∈ L′ such that

〈p, x−K〉 < p(x) ≤ 〈p, convPi(x)〉.
From PA(iv), we conclude that p ∈ L′+. Since 〈p,K〉 > 0, we have p(ω) > 0
which implies p(x) > 0 and we can renormalize p putting p(x) = λ. We see that
this p ∈ Πi(x, λ).
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To prove the compactness of Πi(x, λ), note that since p ≥ 0 we have

λ = p(x) ≥ εp(ω) =⇒ p(ω) ≤ λ

ε
,

that together with 〈p, Γi(x)〉 ≥ 〈p, x〉 imply

〈p,K〉 ≥ 0 =⇒ 〈p, V + ω〉 ≥ 0 =⇒| 〈p, V 〉 |≤ 〈p, ω〉,
since V was chosen to be circled. This and the latter one implies

| 〈p, V 〉 |≤ λ

ε

for each p ∈ Πi(x, λ) and i ∈ N . Therefore by Alaoglu’s theorem, Πi(x, λ) is a
compact set. The convexity and closeness of Πi(x, λ) is trivial due to specifica-
tion.

To prove item (ii), let us take some directed net (xα, pα, λα)α∈Λ such that
xα ∈ Y , pα ∈ Πi(x

α, λα) and xα−→
Λ

y ∈ Y, λα−→
Λ

λ and pα−→
Λ

p in the σ(L′, L)-

topology. It is enough to show that p ∈ Πi(y, λ), i.e. to check

〈p, Γi(y)〉 ≥ p(y) = λ.

In fact, let x′ ∈ conv Pi(y)+ {γ(ω +V ) | γ > 0} be fixed. In view of Proposition
3.1 (v), there is ᾱ ∈ Λ such that x′ ∈ Γi(x

α) for all α ≥ ᾱ, that implies

pα(x′) ≥ pα(xα) = λα.

We assumed L to be finite-dimensional, therefore choosing and fixing some finite
linear basis (zt) of L, we can write xα =

∑
t β

α
t zt. Without loss of generality, we

can assume that βα
t −→

Λ
βt, and y =

∑
βtzt, that entails

λα = pα(xα) =
∑

t

βα
t pα(zt) =⇒ ∑

t

βtp(zt) = p(y) = lim
Λ

pα(xα)

because pα(zt)−→
Λ

p(zt) for each t. Hence p(x′) ≥ p(y) = λ, that we wanted to

have. Q.E.D.

Proof of Lemma 3.2. We already noticed that ZL
ε is convex and compact. Let

us first verify that ZL
ε 6= ∅. Obviously XL

ε 6= ∅. The condition h ≤ 1
n

supposed
in this lemma immediately implies that ∆ 6= ∅. It also implies that ε ≤ 1

h
and

that Ψn
ε 6= ∅ (see footnote 5).

Let us now consider the point-to-set mapping ϕLε = rLε ×λL×s. The fact that
rLε (·) and λL(·) have closed graphs and nonempty convex compact values may be
proved quite standardly. Using Lemma 3.1, we see that s(·, ·) has also a closed
graph and nonempty convex compact values. In order to apply Kakutani-Fan’s
fixed point theorem 6, we only need to show that ϕLε (z) ⊂ ZL

ε , z ∈ ZL
ε . Let us

do it.
6We refer here as Kakutani–Fan’s theorem the fact, known since a long time, that Kakutani’s

theorem still holds true in locally convex topological vector spaces (see for example Sect.5 Ch.9
from [5])
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Obviously rLε (q) ⊂ XL
ε . By construction of λL(q) (see (5)), we have

λ′Li = max
x′∈Xi

L
q(x′) ≥ max

y∈Ln
+,

∑
j∈N

yj=hω
q(y) = h · λLω ,

∑

i∈N

λ′Li =
∑

i∈N

max
x′∈Xi

L
q(x′) ≤ max

y∈XL
q(y) = λLω ,

that implies λL(q) ⊂ ∆.
Furthermore, if pi ∈ Πi(xi, λi), where x ∈ XL

ε and λ ∈ ∆, then

pi(ω) ≥ pi(xi) = λi ≥ h (6)

and
λi = pi(xi) ≥ εpi(ω) =⇒ pi(ω) ≤ 1/ε.

By definition, we have
〈pi, Γi(xi)〉 ≥ pi(xi) = λi,

which, having in mind that V is circled, implies

〈pi, ω + V 〉 ≥ 0 =⇒| 〈pi, V 〉 |≤ pi(ω). (7)

Combining the latter and the former ones, we get

| 〈pi, V 〉 |≤ 1/ε

that gives s(x, λ) ⊂ ΨL
ε . So, for every ε > 0 such that ε < h, the set ZL

ε and the
map ϕLε satisfy the conditions of Kakutani-Fan’s fixed point theorem. Q.E.D.

Proof of lemma 3.3. Let

(xLε , λLε , qLε ) ∈ ϕLε (xLε , λLε , qLε )

be a fixed point. Obviously, xLε and λLε belong to the compact sets XL and ∆.
For easier writing, we drop indices L and ε in the following calculations. Because
of λi = pi(xi) we have

∑

i∈N

λi =
∑

i∈N

pi(xi) = q(x) = max
x′∈Xε

q(x′) = max
y∈Ln

+,
∑

N
(yi+εω)=ω

〈q, (y1+εω, ..., yn+εω)〉

= max
y∈Ln

+,
∑

N
yi=(1−εn)ω

q(y) + εq(ω̃) = (1− εn)λω + εq(ω̃),

where ω̃ = (ω, ..., ω), that (see also (5)) implies

λω ≥
∑

i∈N

λi ≥ (1− εn)λω. (8)

Let us now choose ε ∈ (0, 1/2n]. Using (8) and remembering
∑

λi ≤ 1, we
conclude λω ≤ 2. Since λω ≥ pi(ω) ≥ h (see (5),(6)), we have

2 ≥ pi(ω) ≥ h.
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The latter one, due to (7), gives us the result. Q.E.D.

Proof of Lemma 3.4. Applying Lemma 3.2 for each ε ∈ (0, 1/2n], we may find
zLε ∈ ZL

ε such that zLε ∈ ϕLε (zLε ). In view of Lemma 3.3, letting ε → 0, we can
assume without loss of generality that

zLε = (xLε , λLε , qLε ) −→ (xL, λL, qL), λL ∈ λL(qL), qL ∈ s(xL, λL).

Obviously xL is a feasible allocation in L and λL ∈ ∆. qL ∈ s(xL, λL) proves (i).
We have at the limit

h ≤ pLi (ω) ≤ 2, | 〈pLi , V 〉 |≤ 2,

that proves (ii).
Condition (iii) for the limit points is easily verified in view of the finite-

dimensionality of L and therefore the joint continuity of the map (q, x) → q(x).
We can pass to the limit when ε → 0 in relations (8) and get λLεω → λLω =∑

i∈N λLi ≤ 1 which yields

λLi = λ′Li /λLω ≥ λ′Li , i ∈ N,

that by the definition of values λ′Li (see (5)) gives us (iii). Q.E.D.
Proof of Theorem 2.2. It is based on a limiting process on the net of the finite
dimensional subspaces L of L containing all ωi, directed by inclusion. Let us
consider triplets (xL, λL, qL) obtained in Lemma 3.4. Note that xL ∈ χ which is
σ(Ln, L′n)-compact and λL ∈ ∆ which is compact. In view of Lemma 3.4 (ii), by
Alaoglu’s theorem we can assume without loss of generality that (xL, λL, qL) −→
(x̄, λ̄, q̄). We now define π = ∨p̄i.

Let us show that

p̄i(y) ≥ λ̄i = π(ωi), y ∈ Γi(x̄). (9)

To begin with we specify the values x(i) ∈ Ln
+ from the condition

q̄(x(i)) = max
x′∈Ln

+,
∑

x′j=ωi

q̄(x′) = π(ωi), i ∈ N.

We can realize that x(i) ∈ X i
L for every L ⊃ L̄ for some L̄. Since Γ−1

i (y) is
σ(L,L′)-open in L+ (see Proposition 3.1 (v)), we can assume that y ∈ Γi(x̄

L
i ) for

every L ⊃ L̄ that implies

pLi (y) ≥ λLi = pLi (xLi ) ≥ max
x′∈Xi

L
qL(x′).

Since from x(i) ∈ X i
L we have maxx′∈Xi

L
qL(x′) ≥ qL(x(i)), we conclude

pLi (y) ≥ qL(x(i)).

Passing to the limit in the latter inequality and by the choice of x(i) we have

p̄i(y) ≥ q̄(x(i)) = (∨p̄j)(ωi) = π(ωi)
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that proves (9). This, being applied for y ∈ Pi(x̄i), in view of y ≥ 0 & π ≥ 0 and
Proposition 3.1 (iii), yields π(y) ≥ π(ωi). In addition, we have π(ω) ≥ p̄i(ω) ≥ h
that, together with the latter one, (9) and due to PA(ii), gives us the result.
Q.E.D.

Proof of Theorem 2.1. We now drop condition (2) of Theorem 2.2. Let us define

ωh
i = (1− h · n)ωi + hω, i ∈ N

for some real h ∈ (0, 1/n). Clearly (2) holds for the initial endowments (ωh
i )

since
∑

i∈N ωh
i =

∑
i∈N ωi = ω. Let (xh, q) be an “equilibrium” couple satisfying

the conclusion of Theorem 2.2 for the given endowments. Since π(ω) > 0 where
π = ∨i∈Npi, the functional q can be normalized as

qh : = q/π(ω), qh = (ph
1 , ...., p

h
n),

that obviously gives (∨ph
i )(ω) = 1. To this moment we have : for every h, 0 <

h < 1/n there exists some “equilibrium” couple (xh, qh) such that if πh = ∨ip
h
i

then
〈ph

i , Γi(x
h)〉 ≥ πh(ωh

i ),

1 = πh(ω) ≥ ph
i (ω), i ∈ N.

Besides,
1 = πh(ω) = max

y≥0,
∑

yj=ω
qh(y) =⇒ ∑

N

ph
i (ω) ≥ 1

and by Theorem 2.2

〈ph
i , ω + V 〉 ≥ 0 =⇒| 〈ph

i , V 〉 |≤ ph
i (ω) ≤ 1.

Therefore,

qh ∈ {q = (p1, ...., pn) | | 〈pi, V 〉 |≤ 1, ∀i ∈ N,
∑

N

ph
i (ω) ≥ 1} := M,

where the set M is σ(L′n, Ln)-compact. Again, without loss of generality, we can
assume that

(xh, qh)−→
weak

(x, q), 〈q, ω̃〉 ≥ 1, ω̃ = (ω, ..., ω).

Let us show that (x, π) with π = ∨ipi is a quasi-equilibrium. For this purpose
we choose x(0) ≥ 0, x(i) ≥ 0 satisfying the conditions :

q(x(i)) = max
y≥0,

∑
N

yj=ωi

q(y), i ∈ N,

q(x(0)) = max
y≥0,

∑
N

yj=ω
q(y).

By construction we have

πh(ωh
i ) = (1− h · n)πh(ωi) + h · πh(ω) ≥

12



(1− h · n)qh(x(i)) + h · qh(x(0)) ≥ (1− h · n)qh(x(i))−→
h↓0

q(x(i)) = π(ωi).

Given y ∈ Γi(xi)
⋂

L+, by Proposition 3.1 (v), we have y ∈ Γi(x
h
i ) for h small

enough, that entails
ph

i (y) ≥ πh(ωh
i ).

Now we can pass to the limit letting h → 0, which in view of the previous relation
gives

pi(y) ≥ π(ωi), y ∈ Γi(xi) ∩ L+, i ∈ N.

Finally, since π ≥ pi,

π(y) ≥ π(ωi), i ∈ N, y ∈ Γi(xi) ∩ L+. (10)

To finish the proof note that by Proposition 3.1 (ii) (iii) for each i ∈ N we can
find the net xξ

i ∈ Γi(xi) ∩ L+, ξ ∈ Ξ such that xξ
i −→

weak
xi. Then substituting xξ

i

to y in (10) and then passing to limit, we get

π(xi) ≥ π(ωi), i ∈ N.

Now, if π(xi) > π(ωi) for some i then
∑

i∈N π(xi) > π(ω), which contradicts∑
i∈N xi = ω. Hence π(xi) = π(ωi), i ∈ N , that together with (10), SA(iii) and

Proposition 3.1 (iii) gives us the required result. Q.E.D.
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