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Abstract

The general purpose of this paper is to prove quasiequilibrium existence
theorems for production economies with general consumption sets in an
infinite dimensional commodity space, without assuming any monotonicity
of preferences or free-disposal in production.

The commodity space is a vector lattice commodity space whose topo-
logical dual is a sublattice of its order dual. We formulate two kinds of
properness concepts for agents’ preferences and production sets, which
reduce to more classical ones when the commodity space is locally con-
vex and the consumption sets coincide with the positive cone. Assuming
properness allows for extension theorems of quasiequilibrium prices ob-
tained for the economy restricted to some order ideal of the commodity
space. As an application, the existence of quasiequilibrium in the whole
economy is proved without any assumption of monotonicity of preferences
or free-disposal in production.
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1 Introduction

The purpose of this paper is to prove quasiequilibrium existence theorems for
production economies with general consumption sets in an infinite dimensional
commodity space, without assuming any monotonicity of preferences or free-
disposal in production.

As indicated by the title of this paper, we consider economies defined on
(infinite dimensional) vector lattice commodity spaces, a notion introduced by
Aliprantis and Brown [2]. Here, as in Mas-Colell and Richard [22], Richard [26]
and many others papers ([11], [24], [1], [27], [28], [14], [19]), we assume that
the commodity space is a vector lattice whose topological dual is a sublattice of
its order dual. As well-known, this setting, which covers most of the important
infinite dimensional models, was introduced in order to include the models of
commodity differentiation in Jones [18] and of intertemporal consumption in
Huang and Kreps [17], not covered before by a number of equilibrium existence
results (e.g., [20], [30], [31], [25], [4], [5], [16], [29]) requiring that the commodity
space be a topological vector lattice. Even if it leaves out of its scope some
commodity-price dualities of economic interest (a detailed discussion on relevant
commodity-price dualities can be found in [3], [23]), such a setting is also the
most general one used by now in equilibrium existence proofs, if one excepts a
thought provoking paper by Aliprantis et al. [8] discarding the vector lattice
property of the commodity space and its dual at the cost of an alternate theory
of value with non-linear prices.

Our method of proof is to get quasiequilibria by decentralizing Edgeworth
equilibria whose existence is guaranteed under relatively weak assumptions. When
the preferred sets have an empty interior, the decentralization arguments use
properness assumptions first introduced by Mas-Colell [20], then substantially
weakened. Specifically, uniform properness of preferences was replaced by an as-
sumption of pointwise properness at some particular allocations by Araujo and
Monteiro [9], Duffie and Zame [15], in the particular case where the total en-
dowment is a strictly positive element of the commodity space of an exchange
economy with the positive cone as consumption sets of the agents. This result
was extended by Podczeck [24] to the nonordered case and proved without any
monotonicity assumption. For the more general case where the total endow-
ment is not a quasi-interior element of the commodity space (specially, if this
one has no quasi-interior element), Podczeck introduced a properness concept,
called E-properness, stronger than pointwise properness but weaker than uniform
properness.

It is this concept of E-properness that we mainly address in this paper. The
economy under consideration is a production economy, a case not studied by
Podczeck. We also consider more general consumption sets than the positive
cone of the commodity space. We were stimulated to do it by two papers of
Tourky [27], [28] which perform, in a more general framework, an objective pre-
viously claimed by Back [11] and Boyd and McKenzie [13]. As a counterpart, the
formulation of properness becomes then somewhat abstract. It uses, as well for
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preferences as for production sets, comprehensive lattices which play the same
role as the pretechnology sets introduced by Mas-Colell [21]. For preferences
defined on the positive cone of a locally convex Riesz space, the E-properness
defined in this paper exactly corresponds to Podczeck’s E-properness, while for a
production set in a locally convex Riesz commodity space, E-properness is quite
similar to uniform properness as defined in Mas-Colell [21]. We introduce also
a weaker properness that we call F -properness. As it will be seen, this concept,
so useful for proving the existence of equilibrium in an exchange economy whose
consumers have the positive cone as consumption set, is of a difficult use in a
production economy or in an exchange economy with more general consumption
sets.

As we look for an equilibrium existence theorem without assuming any mono-
tonicity in preferences1 or free-disposal in production, unlike Tourky’s papers,
we cannot make an argument directly in the whole commodity space. We first
decentralize Edgeworth equilibria of an economy restricted to some well-chosen
order ideal of the commodity space, an idea originated from Aliprantis et al.
[4]. The extension of equilibrium prices to the whole commodity space is done
using a technique borrowed from Podczeck [24] and adapted here to the case of
a production economy.

The paper is organized as follows. In the next section, we define the model,
set the main assumptions, discuss the properness definitions, state and prove
theorems extending equilibrium prices of a restricted economy to continuous
equilibrium prices for the initial economy. These theorems have their own inter-
est. As a by-product, they show in particular that under E-properness (relative
to the whole commodity space), a feasible allocation sustainable as a nontrivial
quasiequilibrium with discontinuous prices is also sustainable as a (nontrivial)
quasiequilibrium with continuous prices. Such a property, proved first by Yan-
nelis and Zame [30] in the particular case of an exchange economy defined on a
topological vector lattice having the total initial endowment as a strictly positive
element, was re-proved later in several contexts ([3], [24],[27], [28]). It is obtained
here in our general framework. The extension theorems are applied in Section
3 to establishing quasiequilibrium existence theorems. We then compare these
results with similar ones obtained by Tourky [27], [28] in the same framework
but under assumptions of strict monotonicity of preferences and free-disposal in
production. The main proofs are given in the last section.

2 The model and extension results

2.1 The model

We consider a typical production economy in which the commodity space L is a
partially ordered vector space equipped with a Hausdorff, linear topology τ . Let
I = {1, . . . , I} and J = {1, . . . , J} be respectively the set of consumers and the

1Other than the desirability assumption involved in the formulation of E(or F )-properness.
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set of firms. A consumer i ∈ I is characterized by a consumption set Xi ⊂ L,
an initial endowment ωi ∈ L and a preference relation described by the point-to-
set mapping Pi : Xi → Xi, such that Pi(xi) denotes the set of all consumption
bundles strictly preferred by the i-th agent to the bundle xi. We will also use
the notation yiÂ

i
xi which is equivalent to yi ∈ Pi(xi). A producer (a firm) j is

characterized by a production set Yj ⊂ L. For every j ∈ J , each consumer i is
also endowed with a share θj

i ≥ 0 of the profit of firm j, with
∑

i∈I θj
i = 1. Let

us set θi = (θ1
i , ..., θ

J
i ). The model under study is a 5-tuple

E = (I, J, (L, τ), (Xi, Pi, ωi, θi)i∈I , (Yj)j∈J).

Let us denote by ω =
∑

i∈I ωi the total resources of the economy and let

A(E) = {(x, y) ∈ ∏

i∈I

Xi ×
∏

j∈J

Yj | ∑

i∈I

xi = ω +
∑

j∈J

yj}

be the set of all feasible allocations. In the following, AX(E) will denote the
projection of A(E) on

∏
i∈I Xi. We first recall some definitions.

A triple (x, y, p) is said to be a quasiequilibrium of E iff (x, y) ∈ A(E), p is a
linear functional, with p 6= 0, and
(i) for every i ∈ I, p · xi = p · (ωi +

∑
j∈J θj

i yj) and p · x′i ≥ p · xi ∀x′i ∈ Pi(xi);

(ii) for every j ∈ J , p · y′j ≤ p · yj ∀y′j ∈ Yj.
This quasiequilibrium is said to be nontrivial if for some i0, inf p ·Xi0 < p · xi0 .
A quasiequilibrium such that x′i ∈ Pi(xi) actually implies p · x′i > p · xi is a
Walrasian equilibrium. As well known, under some continuity assumptions on
preferences, classical assumptions on production and some irreducibility con-
dition on the economy, a nontrivial quasiequilibrium is easily proved to be a
Walrasian equilibrium.

On the other hand, x ∈ AX(E) is said to be blocked by a nonempty coalition
B ⊂ I if there exists x′B ∈

∏
i∈B Xi such that

∑
i∈B(x′iB − ωi) ∈ ∑

i∈B

∑
j∈J θj

i Yj

and x′iB ∈ Pi(xi) ∀i ∈ B. The core of E is the set of all x ∈ AX(E) which are
blocked by no (nonempty) coalition. Following Aliprantis et al. ([3], [4], [5]),
x ∈ AX(E) is said to be an Edgeworth equilibrium if, for every integer r ≥ 1, the
r-repetition of x belongs to the core of the r-replication of E . Let Ce(E) denote the
set of all Edgeworth equilibria of E . As it is easily seen and proved in Florenzano
[16], under convexity assumptions for consumption and production sets, the set
of all Edgeworth equilibria Ce(E) contains the set Cf (E) of all x ∈ AX(E) such
that there exists no t = (ti) ∈ [0, 1]I , t 6= 0, and no x′t ∈

∏
ti>0 Xi satisfying

∑

i∈I

ti(x
′
it − ωi) ∈

∑

i∈I

ti
∑

j∈J

θj
i Yj

x′it ∈ co Pi(xi) ∀i : ti > 0.

The assumptions the economy will be required to satisfy are divided into
several groups.
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Structural assumptions (SA)

(i) L is a linear vector lattice (or Riesz space) endowed with a Hausdorff linear
topology τ ;

(ii) L+ is a closed cone in the τ -topology of L;

(iii) L′ is a sublattice of the order dual of L.
It is worth noticing that we do not assume the topology τ to be locally solid.

Note that if L were a locally solid Riesz space then the requirements (ii), (iii)
would be automatically valid. Since we avoid the solidness hypothesis, we need
to require them explicitly. For more specific explanations and references, the
reader is referred to [3], [6], [22].
The three following groups of assumptions are classical for existence of equilib-
rium and do not require special explanations. It should only be noticed that we
do not make in (C) any local nonsatiation assumption. Local nonsatiation at
every component of well-chosen consumption allocations will be a consequence
of properness assumptions to be made later.

Consumption Assumptions (C)

For all i ∈ I,

(i) Xi ⊂ L is convex, τ -closed, and ωi ∈ Xi;

(ii) ∀xi ∈ Xi, the set P−1
i (xi) = {yi ∈ Xi | xi ∈ Pi(yi)} is σ(L, L′)2-open in Xi;

and for each x = (xi) ∈ AX(E),

(iii) (convexity and irreflexivity) Pi(xi) is convex and xi /∈ Pi(xi);

(iv) Pi(xi) is τ -open in Xi.

Production Assumption (P)

For all j ∈ J ,

Yj ⊂ L is convex, τ -closed and 0 ∈ Yj.

Boundedness Assumption (B)

A(E) is (σ(L,L′))|I|+|J |-compact.

The previous definitions and assumptions can be adapted in an obvious way to
the case of a pure exchange economy

E = (I, (L, τ), (Xi, Pi, ωi)i∈I).

As proved in Florenzano [16], under (C (i) – (iii)), (P), (B) for an economy E
defined on a Hausdorff topological vector space, Ce(E) is nonempty. The same is

2In what follows, σ(L,L′) denotes the weak topology on L; co A denotes the convex hull of
the set A and A is its closure.
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true for the economy E|K where K is any τ -closed vector subspace of L containing
all ωi and E|K is the production economy truncated to K whose consumption and
production sets are respectively Xi ∩K and Yj ∩K. If one assumes in addition
(C (iv)), then Cf (E) (resp. Cf (E|K ) if K is τ -closed) is also nonempty.

2.2 Properness assumptions and extension of linear functionals

For decentralizing Edgeworth equilibria when the commodity space L is infinite
dimensional, from now on, we assume that (L, τ) satisfies (SA) and introduce
properness assumptions.

Definition 2.1 Let K be some order ideal of L. A preference relation P : X → X
is said to be F -proper relative to K at x ∈ X if there exists a τ -open convex sub-
set Vx of L, a lattice Zx ⊂ K verifying Zx + K+ ⊂ Zx and some subset Ax of L,
radial3 at x, such that x ∈ V x ∩ Zx and

∅ 6= Vx ∩ Zx ∩ Ax ⊂ P (x) (2.1)

If, moreover,
P (x) ∩ Ax ⊂ V x ∩ (Zx + L+) (2.2)

then the preference relation is said to be E-proper at x ∈ X relative to K.

Note that it automatically follows from the previous definition that x ∈ K.
To understand Definition 2.1, let us assume that (L, τ) is locally convex and
that vx, such that x + αvx ∈ K+ for some α > 0, and Ux are respectively a
properness vector and a τ -open convex properness 0-neighborhood. Let Γx be the
open convex cone with vertex 0 generated by ({vx}+Ux). Then a convex-valued
correspondence P : L+ → L+ is F -proper relative to K at x ∈ K+ if there exists
some Ax ⊂ L, radial at x, such that

({x}+ Γx) ∩K+ ∩ Ax ⊂ P (x)

a definition originated from Yannelis and Zame [30] in the case K = L, while P
is E-proper relative to K at x ∈ K+ if there exists some Ax ∈ L, radial at x,
such that

x + βvx ∈ P (x) for some β > 0

(P (x) + Γx) ∩K+ ∩ Ax ⊂ P (x).

In the first case, Vx = {x} + Γx and Zx = K+ fit with F -properness as defined
in Definition 2.1, while in the second case, Zx = K+ and Vx = P (x) + Γx

satisfy conditions (2.1) and (2.2) of the same definition, which corresponds to
the definition of E-properness relative to K given by Podczeck in [24].

3If A is a subset of a vector space L, then A is called radial at a point x ∈ A if for each
y ∈ L there exists a real number λ̄, 0 < λ̄ ≤ 1 such that (1 − λ)x + λy ∈ A for every λ with
0 ≤ λ ≤ λ̄.
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From the two previous examples, it should be clear that properness assump-
tions on a preference relation P : X → X, as stated in Definition 2.1, are as well
assumptions on P as assumptions on X. As it is usually observed, a correspon-
dence P such that (P (x)∩Ax) ⊂ (Zx +L+) is E-proper at x if P (x)∩Ax can be
extended (i.e. P (x)∩Ax = P̂ (x)∩Zx∩Ax) to a convex set P̂ (x) with a τ -interior

point in Zx ∩ Ax and such that x ∈ P̂ (x) ∩ Zx. Such an extendibility property
is precisely assumed by Tourky who defines, in [27], [28], M -properness at x of
a convex-valued preference correspondence such that x ∈ P (x) by the condition
P (x) = P̂ (x) ∩ Zx, where Zx is a lattice containing x, such that Zx + L+ = Zx,
and P̂ (x) is a convex set with an interior point in Zx (x + ω, in Tourky’s con-
text). It is also worth noticing that condition (2.1) in Definition 2.1 together
with x ∈ V x ∩ Zx imply that x is a point of local nonsatiation for co P in K.

To end with the remarks on properness of a preference relation, let us notice
that assumptions of E-properness at x relative to the whole space L and of E-
properness at x relative to some order ideal K of L containing x are not directly
comparable, even if Vx ∩ Zx ∩K 6= ∅. We will come back to this point later.

Definition 2.2 Let K be some order ideal of L. A set Y ⊂ L is said to be
F -proper relative to K at y ∈ Y if there exists a τ -open convex subset Vy of L, a
convex lattice Zy ⊂ K verifying Zy −K+ ⊂ Zy and some subset Ay of L, radial
at y, such that y ∈ V y ∩ Zy and

∅ 6= Vy ∩ Zy ∩ Ay ⊂ Y (2.3)

If, moreover,
Y ∩ Ay ⊂ V y ∩ (Zy − L+) (2.4)

then the set is said to be E-proper at y ∈ Y relative to K.

Once again, it automatically follows from the previous definition that y ∈ K.
It also follows from the comprehensivity of Zy that Zy is convex. In order to
understand the difference between F - and E-properness at y ∈ Y ∩ K, let us
assume once more that (L, τ) is locally convex and that vy ∈ K+ and Uy are
respectively a properness vector and a τ -open convex properness 0-neighborhood.
Let Γy be the open convex cone with vertex 0 generated by ({vy} + Uy). Then
Y is F -proper relative to K at y ∈ Y ∩K if there exists some Ay ⊂ L, radial at
y, such that

({y} − Γy) ∩ {z ∈ K | z+ ≤ y+} ∩ Ay ⊂ Y

a condition similar to the one imposed by Richard [25] if K = L, while Y is
E-proper relative to L at y ∈ Y if, as in Mas-Colell [21], there exists some
pretechnology convex lattice Zy such that Y ⊂ Zy, Zy − L+ ⊂ Zy and

(Y − Γ) ∩ Zy ⊂ Y.

Here v ∈ L+ is a vector of uniform properness of Y , U is a τ -open convex 0-
neighborhood and Γ is the open convex cone with vertex 0 generated by ({v}+U).
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Note that a production set Y = {0} is neither F -proper nor E-proper. On
the other hand, Y = −L+ is F -proper and E-proper, relative to any order ideal
K of L, at any point y ∈ Y ∩K.

Note also that E-properness relative to L at y is implied by M -properness at
y, as defined in Tourky [28]. For a (production) set as for a preference relation,
assumptions of properness relative to L at a point y ∈ Y and of properness
relative to some order ideal K of L containing y are not directly comparable,
even if Vy ∩ Zy ∩K 6= ∅.
Definition 2.3 Let K be some order ideal of L. A production economy E is said
to be F -proper (resp. E-proper) relative to K at (x, y) ∈ ∏

i∈I Xi × ∏
j∈J Yj if

each preference relation and each production set are F -proper (resp. E-proper)
relative to K at the corresponding component of (x, y), with for each i, ωi ∈ Zi

xi

and for each j, 0 ∈ Zj
yj

(where the sets Zi
xi

and Zj
yj

are taken from the definition
of properness).

If E is a pure exchange economy, E is F -proper (resp. E-proper) relative to
K at x ∈ ∏

i∈I Xi if each preference relation is F -proper (resp. E-proper) relative
to K at the corresponding component of x , with for each i, ωi ∈ Zi

xi
(with Zi

xi

taken from the definition of properness).

Once again, observe that K contains for every i ∈ I, xi, ωi, vi such that xi +
vi ∈ V i

xi
∩ Zi

xi
, and, in case of production, for every j ∈ J , yj, vj such that

yj − vj ∈ V j
yj
∩ Zj

yj
. Such vi, i ∈ I and vj, j ∈ J are called properness vectors of

E at (x, y).
The following definition reinforces the previous one. The reason for such a

definition will become clear later.

Definition 2.4 A F -proper (resp. E-proper) relative to K production economy
E is said to be nontrivially F -proper (resp. E-proper) if, in the previous defini-
tion, the set

∑
i∈I(Z

i
xi
∩L(u))−∑

j∈J(Zj
yj
∩L(u)) is a radial at ω subset of L(u),

where L(u)4 denotes the ideal generated in K by

u =
∑

i∈I

|ωi|+
∑

i∈I

|xi|+
∑

j∈J

|yj|

and if for every i ∈ I and for every j ∈ J , E has properness vectors in L(u).
Such vi, vj are called nontrivial properness vectors of E at (x, y).

A pure exchange economy E, F -proper (resp. E-proper) relative to K is said
to be nontrivially F -proper (resp. E-proper) if, in the previous definition, the set∑

i∈I(Z
i
xi
∩ L(u)) is a radial at ω subset of L(u), where L(u) denotes the ideal

generated in K by
u =

∑

i∈I

|ωi|+
∑

i∈I

|xi|

and if for every i ∈ I, E has properness vectors in L(u). Such vi are called
nontrivial properness vectors of E at x.

4Recall that for u ∈ L, L(u) = {z ∈ L | ∃λ > 0, |z| ≤ λu}. As K is an ideal and u ∈ K,
L(u) ⊂ K.
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From now on, in view of these definitions, the results of this paper will be written
for a production economy. Their translation for an exchange economy should be
obvious.

The considerations below are based on the following auxiliary result of convex
analysis, the first part of which can be found in Podczeck [24].

Lemma 2.1 (Main auxiliary lemma) Let (L, τ) be a Hausdorff topological
vector space and let K be a vector subspace of L. Let Z be a convex subset of
K and V be a convex τ -open subset of L such that V ∩ Z 6= ∅. If p is a linear
functional on K satisfying for some z ∈ V ∩ Z

p · z ≤ p · y ∀y ∈ V ∩ Z

then there exists a τ -continuous linear functional π ∈ (L, τ)′ and a linear func-
tional h on L such that p = π|K + h|K and

π · z ≤ π · y ∀y ∈ V, h · z ≤ h · y ∀y ∈ Z. (2.5)

Let us assume in addition that (L, τ) is an ordered vector space and set K+ =
L+ ∩K. If Z + K+ ⊂ Z, then h|K ≥ 0, π|K ≤ p and

p · (z − y) = π · (z − y) for each y ≤ z, y ∈ Z. (2.6)

Replacing the condition Z + K+ ⊂ Z by Z −K+ ⊂ Z and applying the previous
lemma to the sets −V , −Z and to the point −z, we get immediately the following
corollary:

Corollary 2.1 Let (L, τ) be a Hausdorff locally convex topological vector space
and let K be a vector subspace of L. Let Z be a convex subset K and V be a
convex τ -open subset of L such that V ∩ Z 6= ∅. If p is a linear functional on K
satisfying for some z ∈ V ∩ Z

p · z ≥ p · y ∀y ∈ V ∩ Z

then there exists a τ -continuous linear functional π ∈ (L, τ)′ and a linear func-
tional h on L, such that p = π|K + h|K and

π · z ≥ π · y ∀y ∈ V, h · z ≥ h · y ∀y ∈ Z. (2.7)

Let us assume in addition that (L, τ) is an ordered vector space and set K+ =
L+ ∩K. If Z −K+ ⊂ Z, then h|K ≥ 0, π|K ≤ p and

p · (z − y) = π · (z − y) for each y ≥ z, y ∈ Z. (2.8)

Exploiting the previous lemma and its corollary, the following proposition
describes the important properties of F -proper economies. Its proof makes ex-
tensive use of the Riesz decomposition property of L and the Riesz-Kantorovich
formula applied to continuous linear functionals on L, both guaranteed by the
structural assumptions (SA) on the commodity-price duality 5. In what follows,
E|K denotes the economy truncated to K as defined above.

5For more on these two properties, see [7]
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Proposition 2.1 Let K be some order ideal of L containing all ωi and let
(x, y, p) be a quasiequilibrium of E|K with a price p ∈ K∗, the algebraic dual
of K. Under Assumption (C(iii)), if E is F -proper relative to K at (x, y) and
if the sets V i

xi
, Zi

xi
, V j

yj
, Zj

yj
are taken from the definition of properness, then

there exist, for every t ∈ I ∪ J , τ -continuous functionals πt ∈ (L, τ)′ such that
πt|K ≤ p, and

πi · V i
xi
≥ πi · xi, πj · V j

yj ≤ πj · yj, i ∈ I, j ∈ J. (2.9)

Moreover, if π = (∨i∈Iπi) ∨ (∨j∈Jπj) then π ∈ (L, τ)′ and

∀i ∈ I, ∀zi ≤ xi, zi ∈ Zi
xi

, πi · (xi − zi) = π · (xi − zi) = p · (xi − zi) (2.10)

∀j ∈ J, ∀zj ≥ yj, zj ∈ Zj
yj

, πj · (zj − yj) = π · (zj − yj) = p · (zj − yj) (2.11)

π · (ω − z) = p · (ω − z) for each z ≤ ω, z ∈ ∑

i∈I

Zi
xi
−∑

j∈J

Zj
yj

(2.12)

and, finally, for every i ∈ I

π · xi = π · ωi +
∑

j∈J

θijπ · yj. (2.13)

Proposition 2.2 Assume, in the conditions of Proposition 2.1, that for some
order ideal K ′ of K,

∑
i∈I(Z

i
xi
∩K ′)−∑

j∈J(Zj
yj
∩K ′) is a radial at ω subset of

K ′. Then π|K′ = p|K′ . Consequently, if in the conditions of Proposition 2.1, E is
nontrivially F -proper relative to K at (x, y) with vi, i ∈ I, vj, j ∈ J as nontrivial
properness vectors, and if p|L(u)

6= 0, then π · vi = p · vi > 0 or π · vj = p · vj > 0,
for some i ∈ I, j ∈ J .

The following theorem is the first main result of this paper. It states that a
feasible allocation being price supported in K as a nontrivial quasiequilibrium
can, because of E-properness relative to K, also be price supported in L as a
nontrivial quasiequilibrium. More precisely,

Theorem 2.1 If, in the conditions of Proposition 2.1, E is E-proper relative to
K at (x, y) and if there is i0 ∈ I such that p·x′i0 < p·xi0 for some x′i0 ∈ Xi0∩Zi0

xi0
,

then (x, y, π) is a nontrivial quasiequilibrium of E. If E is nontrivially E-proper
relative to K at (x, y) and if p|L(u)

6= 0, then (x, y, π) is a quasiequilibrium of E.
This quasiequilibrium is nontrivial if, in addition,

vi ∈ {ω}+
∑

j∈J

Yj −
∑

i∈I

Xi, vj ∈ {ω}+
∑

j∈J

Yj −
∑

i∈I

Xi, i ∈ I, j ∈ J. (2.14)

for some collection of nontrivial properness vectors at (x, y).

As a by-product, replacing K by L in the previous result, it should be noticed
that any feasible allocation sustainable as a nontrivial quasiequilibrium with a
price vector p /∈ (L, τ)′ such that p · x′i0 < p · xi0 for some x′i0 ∈ Xi0 ∩ Zi0

xi0
is
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also sustainable as a nontrivial quasiequilibrium with continuous price if E is
E-proper at (x, y) relative to L. We extend here a result of Podczeck [24] (Theo-
rem 2 with Assumption A.7 ′) to the case of a production economy with general
consumption sets. The second part of the theorem shows, without assuming any
monotonicity of preferences or free-disposal in production, that any feasible allo-
cation (x, y), sustainable as a quasiequilibrium with a price vector p /∈ (L, τ)′ but
such that p|L(u)

6= 0 can also be sustained as a quasiequilibrium with continuous
price in case of nontrivial E-properness of E relative to L. As we will see in the
last section, this assertion extends similar results of Tourky [27], [28].

Let us now come back to the case of F -proper economies. The next propo-
sition gives sufficient conditions to get an analogue result under F -properness.
In view of Proposition 2.2 and of the proof of Theorem 2.1, it may be stated
without proof.

Proposition 2.3 Assume, in the conditions of Proposition 2.1, that
∑

i∈I Zi
xi
−∑

j∈J Zj
yj

is a radial at ω subset of K and that each Pi(xi) ∩K and each Yj ∩K
are τ -dense in (respectively) Pi(xi) and Yj. Then π|K = p and (x, y, π) is a
quasiequilibrium of E. Obviously, if (x, y, p) is a nontrivial quasiequilibrium,
then (x, y, π) is also nontrivial.

In view of applying Proposition 2.2, let us assume that the order ideal K
is τ -dense in L. One can wonder how to guarantee that each Pi(xi) ∩ K and
each Yj ∩K are τ -dense in (respectively) Pi(xi) and Yj. Let us first remark that
under (C (iv)), for the τ -density of preferred sets it is enough to require the τ -
density of Xi∩K in Xi. One important example of set having this property is the
positive cone L+ of L, as proved by Podczeck [24] in his Lemma 3, using the same
structural assumptions as our (SA (i) – (iii))6. It should be clear from this that
any set of the form {k}+L+ or {k}−L+ for some k ∈ K has the same property.
Since K is assumed to be an order ideal of L, the same is true for any order
interval with lower and upper bounds in K (note that, in view of (SA)(ii), each
such interval is also τ -closed). The following lemma and its obvious corollary
give sufficient conditions for density which may have an economic interpretation.

Lemma 2.2 Let some Z ⊂ L be τ -closed, K be τ -dense in L and every z ∈ Z
satisfy
– either there exists az ∈ K, az ≥ z and some τ -open, convex Uz ⊂ L such that

∅ 6= Uz ∩ ({az} − L+) ⊂ Z, & z ∈ U z ∩ ({az} − L+), (2.15)

– or there exists az ∈ K, az ≤ z and some τ -open, convex Uz ⊂ L such that

∅ 6= Uz ∩ ({az}+ L+) ⊂ Z, & z ∈ U z ∩ ({az}+ L+). (2.16)

Then K ∩ Z = Z.
6The proof is given in Podczeck [24] in the case where K is the order ideal generated by a

positive element of L, but it is easily checked that the same proof can be given for any other
order ideal τ -dense in L.
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Corollary 2.2 Let some closed Z ⊂ L admit a representation of the form

Z = U ∩ (B − L+)

or of the form
Z = U ∩ (B + L+),

for some τ -open convex set U and B ⊂ K satisfying for every b ∈ B, ({b} −
L+) ∩ U 6= ∅ in the first case and ({b} + L+) ∩ U 6= ∅ in the second case. Then
K = L implies K ∩ Z = Z.

The conditions (2.15), (2.16) imposed in the lemma can be interpreted as a
kind of “upper-properness” at the point z relative to K (“lower-properness”
respectively), required for consumption sets and production sets in addition to
the properness of preferences and production. In the properties postulated in
Lemma 2.2, one restrictive point is the fact that every z ∈ Z is supposed to have
an upper (lower) bound in K. But being applied to consumption or production
sets, this requirement may be economically interpreted. In fact, taking into
account that ωi ∈ K for each i, one may postulate that firms’ inputs (outputs)
have to be chosen from L(ω) ⊂ K, the order ideal generated in K by ω =

∑
i |ωi|.

Analogous hypothesis may be taken for the admissible consumption plans of
consumers7.

As shown in Corollary 2.2, consumption sets of the form Xi = Zi∩({ai}+L+),
with ai ∈ K, Zi convex, τ -closed, with an interior point in ({ai}+L(ω)+), satisfy
(2.16). This kind of assumption is evoked by Podczeckin [24] as allowing, for an
exchange economy, an extension of his equilibrium existence result under F -
properness. A similar hypothesis for production sets seems more questionable.

3 Application to the quasiequilibrium existence

problem

As already noticed, under Assumptions(C(i)–(iv)), (P), (B), we have Cf (E) 6= ∅.
We now start from an element (x, y) ∈ Cf (E) and assume (SA) and that K
is a principal order ideal in L8. The next proposition proves the existence of
p ∈ (K,≤)∼ such that (x, y, p) is a quasiequilibrium of E|K .

Proposition 3.1 Let K be a principal ideal of L and let (x, y) ∈ Cf (E). Under
Assumptions (SA), (C (i), (iii), (iv)) and (P), if E is F -proper relative to K at
(x, y), then there exists p ∈ (K,≤)∼ such that (x, y, p) is a quasiequilibrium of
E|K .

If we restrict ourself to the case K = L(u), combining Proposition 3.1 with
Theorem 2.1, we get immediately the main result of this section.

7Note that such a kind of property automatically holds true if Xi ⊂ L+ (since 0 ∈ K).
8In other words, K is a solid Riesz subspace of L with an order unit e, equivalently K = L(e),

the principal order ideal generated in L by e.
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Theorem 3.1 Let (x, y) ∈ Cf (E). Under Assumptions (SA), (C (i), (iii), (iv))
and (P), if E is nontrivially E-proper relative to L(u) at (x, y), then there ex-
ists π ∈ (L, τ)′ such that (x, y, π) is a nontrivial quasiequilibrium of E. This
quasiequilibrium is nontrivial if nontrivial properness vectors can be chosen so
as to verify (2.14). Consequently, under all assumptions made in Section 2.1 on
E, and if E is nontrivially E-proper, relative to L(u), at every (x, y) ∈ Cf (E),
then there exists a nontrivial quasiequilibrium (x̄, ȳ, π̄) with π̄ ∈ (L, τ)′ and
this quasiequilibrium is nontrivial if the nontrivial properness vectors at each
(x, y) ∈ Cf (E) can be chosen so as to verify (2.14).

Theorem 3.1 can be considered as extending an existence result (Theorem 1, with
Assumption A.7) in Podczeck [24] to a production economy with general con-
sumption sets. Indeed, for an exchange economy with consumption sets equal to
the positive orthant, L(u) = L(ω) and we have already noticed that E-properness
relative to L(ω), as defined in [24], implies E-properness relative to L(ω), as de-
fined in this paper, with comprehensive lattices Zi

xi
all equal to L(ω)+. If ω > 0,

it is obvious that L(ω)+ is radial at ω in L(ω). The properness vectors, belonging
to L(ω), are nontrivial and the reader will easily verify that E has also nontrivial
properness vectors satisfying (2.14).

With production and general consumption sets, contrary to the previous
case, the ideal L(u) depends on the particular allocation at which are stated
the properness assumptions. We now give conditions which imply that an econ-
omy F (resp. E)-proper at a feasible allocation (x, y) with properness vectors in
L(u) is also nontrivially F (resp. E)-proper at (x, y).

Lemma 3.1 Assume that ω > 0 and that 0 ∈ Zi
xi

, for every i ∈ I. Then

[ω − 1

4
u, ω +

1

4
u] ⊂ ∑

i∈I

(Zi
xi
∩ L(u))−∑

j∈J

(Zj
yj
∩ L(u))

and the set
∑

i∈I(Z
i
xi
∩L(u))−∑

j∈J(Zj
yj
∩L(u)) is a radial at ω subset of L(u).

Finally, let us let us assume, as suggested above, that firms’ inputs (outputs) have
to be chosen from L(ω), the principal order ideal generated by ω =

∑
i∈I |ωi|,

while admissible consumption plans of consumers are to have their positive (neg-
ative) part in L(ω). As already noticed, such a condition is automatically sat-
isfied in an exchange economy with consumption sets included in L+ or having
an inferior bound in L(ω). Then A(E) = A(E|L(ω)

) and L(u) = L(ω) does not
depend on the particular attainable allocation (x, y). The following proposition
is a corollary of Theorem 3.1.

Proposition 3.2 Let us assume (SA), (C), (P) (B) and that A(E) = A(E|L(ω)
).

If E is nontrivially E-proper, relative to L(ω), at every (x, y) ∈ Cf (E), then there
exists a nontrivial quasiequilibrium (x̄, ȳ, π̄) with π̄ ∈ (L, τ)′.
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The same conclusion holds true if the order ideal L(ω) is τ -closed9, since then
Cf (E|

L(ω)
) is nonempty.

Proposition 3.3 Let us assume (SA), (C), (P) (B) and that the order ideal
L(ω) is τ -closed. If E is nontrivially E-proper, relative to L(ω), at every (x, y) ∈
Cf (E|L(ω

), then there exists a nontrivial quasiequilibrium (x̄, ȳ, π̄) with π̄ ∈ (L, τ)′.

More important is the following result where we assume that L(ω) is τ -dense in
L. We omit its immediate proof which combines Proposition 3.1 with Proposi-
tion 2.3.

Theorem 3.2 Let us assume (SA), (C), (P) (B) and that L(ω) is τ -dense in
L. Let us assume also either that

(i) ∀i, Xi = ({ai} + L+) ∩ Zi, with ai ∈ L(ω), Zi convex, τ -closed, with an
interior point in ({ai}+ L+)

(ii) and, in case of production, ∀j, Yj = ({bj} − L+) ∩ Zj, with bj ∈ L(ω), Zj

convex, τ -closed, with an interior point in ({bj} − L+)

or that

(iii) ∀i, Xi = ({ai} − L+) ∩ Zi, with ai ∈ L(ω), Zi convex, τ -closed, with an
interior point in ({ai} − L+)

(iv) and, in case of production, ∀j, Yj = ({bj} + L+) ∩ Zj, with bj ∈ L(ω), Zj

convex, τ -closed, with an interior point in ({bj}+ L+).

Then A(E) = A(E|L(ω)
) and if E is nontrivially F -proper relative to L(ω) at every

(x, y) ∈ Cf (E), then E has a nontrivial quasiequilibrium (x̄, ȳ, π̄) with π̄ ∈ (L, τ)′.

It is worth noticing that Theorem 3.2 extends Theorem 1 with Assumption A.6
in Podczeck [24], thus Araujo and Montero [9], to a production economy with
general consumption sets. Obviously, the quasiequilibrium obtained in Proposi-
tions 3.2, 3.3 and Theorem 3.2 is nontrivial if at each (x, y) ∈ Cf (E) (Cf (E|L(ω)

) for
Proposition 3.3), some collection of nontrivial properness vectors satisfies (2.14).

4 Concluding remarks

Our main concern in this paper was to obtain extension and quasiequilibrium
existence results without assuming monotonicity of preferences or free-disposal
in production. As already noticed, our results extend Podczeck’s results to a
production economy with general consumption sets. These results are now to
be compared with those obtained by Tourky [27], [28] in the same framework

9Note that depending on the properties of L and of ω relative to L, L(ω) may be τ -closed,
τ -dense in L (obviously, it may have both properties). In most of cases, it is neither closed nor
τ -dense.
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but with a technique of proof which heavy relies on both assumptions of strict
monotonicity of preferences and free disposal in production.

We have already observed that the E-properness used in this paper is similar
to Tourky’s M -properness, as far as E-properness is relative to L, the whole
commodity space. More precisely, at (x, y) ∈ ∏

i∈I Xi × ∏
j∈J Yj, Tourky’s M -

properness implies E-properness relative to L with ω as a common properness
vector and it follows form Lemma 3.1 that if ω > 0 and if 0 ∈ Zi

xi
, ∀i ∈ I, then

ω is a common nontrivial properness vector. Let then (x, y, p) be an equilibrium
of E . As, in view of F -properness at (x, y), p ·ω > 0, it follows from Theorem 2.1
that there exists π ∈ (L, τ)′ such that (x, y, π) is a quasiequilibrium of E , as in
Corollary 2.2 of [27] and Theorem 2.2 of [28]. Contrary to [27], the conclusion
of Tourky’s Corollary 2.2 is obtained here without assuming that preferences are
monotone at each component of x; contrary to [27], the conclusion of Tourky’s
Theorem 2.2 is obtained here without assuming free-disposal in production.

On the other hand, in Theorem 3.1 our main existence result, we required at
(x, y) ∈ Cf (E), nontrivial E-properness relative to L(u), an assumption which
is, in general, neither stronger nor weaker than M -properness with nontrivial
properness vectors in L(u). Defining M-properness at (x, y) relative to some
order ideal K by the conditions:
- ∀i ∈ I, Pi(x) = P̂i(xi) ∩ (Zi

xi
+ L+) where

P̂i(xi) is a convex set such that xi ∈ P̂i(xi) and xi + ω ∈ P̂i(xi);
Zi

xi
is a sublattice of K containing 0, xi, ωi, such that Zi

xi
+ K+ ⊂ Zi

xi

- ∀j ∈ J, Yj = Ŷj(yj) ∩ (Zj
yj
− L+) where

Ŷj(yj) is a convex set such that yj − ω ∈ intŶj(yj);
Zj

yj
is a sublattice of K containing yj, 0, such that Zj

yj
−K+ ⊂ Zj

yj

Theorem 3.1 has, as corollary, the following Tourky-like theorem:

Corollary 4.1 (to Theorem 3.1) Let (x, y) ∈ Cf (E). Under Assumptions
(SA), (C (i), (iii), (iv)) and (P), if E is M-proper at (x, y) relative to L(u) and
if ω > 0, then there exists π ∈ (L, τ)′ such that π · ω > 0 and (x, y, π) is a
quasiequilibrium of E.

Here M -properness relative to L(u) is a stronger assumption than M -properness
relative to L, but the existence of quasiequilibrium is obtained without assuming
monotonicity or free-disposal. For this reason, our main existence result, which
allows to get the existence of quasiequilibrium in a case not covered by Tourky,
is a complement rather than a substitute to Tourky’s existence results. It is still
for us an open question to know if Tourky’s equilibrium existence results could
be deducted from the ours.
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5 Proofs

Proof of Lemma 2.1. As already said, the first part of this lemma follows from
Lemma 2 in Podczeck [24]10. Let us prove the second part.

Since Z + K+ ⊂ Z, from (2.5) we conclude h · y ≥ 0 ∀y ∈ K+, hence h|K ≥ 0
and π|K ≤ p. To prove (2.6), take any y ∈ Z, y ≤ z. Now (2.5) gives h · y ≥ h · z,
but since z − y ≥ 0, z − y ∈ K and h|K ≥ 0, we have h · z ≥ h · y and conclude
h · (z − y) = 0. From p = π|K + h|K , we deduce

p · (z − y) = π · (z − y) + h · (z − y) = π · (z − y).

Proof of Proposition 2.1. Since (x, y, p) is a quasi-equilibrium of E|K , formulas
(i)-(ii) from the definition of quasiequilibrium are fulfilled for Pi(x) ∩ K and
Yj ∩K respectively. Now let us specify the cones

Γi = {λ(v − xi) | v ∈ V i
xi

, λ > 0}, i ∈ I,

Γj = {λ(v − yj) | v ∈ V j
yj

, λ > 0}, j ∈ J.

These cones are obviously convex and open. In view of (2.1), (2.3), since Axi
and

Ayj
are assumed to be radial in L at the points xi, yj respectively, we see that

∅ 6= ({xi}+ Γi) ∩ Zi
xi
⊂ {xi}+ {λ(v − xi) | v ∈ co Pi(xi) ∩K, λ > 0}

and
∅ 6= ({yj}+ Γj) ∩ Zj

yj
⊂ {yj}+ {λ(v − yj) | v ∈ Yj ∩K, λ > 0}.

Therefore, using (i), (ii) from the definition of quasiequilibrium, we can conclude
that

p · (({xi}+ Γi) ∩ Zi
xi

) ≥ p · xi, i ∈ I,

p · (({yj}+ Γj) ∩ Zj
yj

) ≤ p · yj, j ∈ J.

From xi ∈ V i
xi

and yj ∈ V j
yj , we deduce xi ∈ ({xi}+ Γi)∩Zi

xi
and yj ∈ ({yj}+ Γj)

∩Zj
yj

. Applying our Main auxiliary lemma (Lemma 2.1) and its corollary, we get
the existence of τ -continuous functionals πi, πj ∈ (L, τ)′ such that

πi ·({xi}+Γi) ≥ πi ·xi, πi ·(xi−zi) = p·(xi−zi), ∀zi ≤ xi, zi ∈ Zi
xi

, i ∈ I (5.1)

and

πj · ({yj}+ Γj) ≤ πj · yj, πj · (zj − yj) = p · (zj − yj), ∀zj ≥ yj, zj ∈ Zj
yj

, j ∈ J.
(5.2)

10Podczeck assumes in this lemma that (L, τ) is locally convex but does not use this extra
assumption in his proof.
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Clearly by the Γi and Γj specification and due to the continuity of πi, πj, the latter
ones implies (2.9). Also, due to assumptions Zi

xi
+K+ ⊂ Zi

xi
and Zj

yj
−K+ ⊂ Zj

yj
,

these functionals satisfy
πt|K ≤ p, ∀t ∈ I ∪ J.

Now we set π = (∨i∈Iπi)∨ (∨j∈Jπj) and note that, in view of (SA)(iii), π is a
τ -continuous linear functional. Also, since K was assumed to be an order ideal
of L, we have

p ≥ π|K , π ≥ πt, t ∈ I ∪ J. (5.3)

This, in view of (5.1), gives for zi ≤ xi, zi ∈ Zi
xi

π · (xi − zi) ≥ πi · (xi − zi) = p · (xi − zi)

and
p · (xi − zi) ≥ π · (xi − zi),

that yields (2.10). Analogously (5.2) and (5.3) yields (2.11).
To prove (2.12), let us recall that (x, y) is feasible, i.e.

∑

i∈I

xi =
∑

i∈I

ωi +
∑

j∈J

yj.

Taking any zi ≤ xi, zi ∈ Zi
xi

and any zj ≥ yj, zj ∈ Zj
yj

, we can write

∑

i∈I

(xi − zi) +
∑

j∈J

(zj − yj) =
∑

i∈I

ωi +
∑

j∈J

zj −
∑

i∈I

zi.

Applying p to the left and to the right sides of this equality and using (2.10),
(2.11), we conclude

π · (ω +
∑

j∈J

zj −
∑

i∈I

zi) = p · (ω +
∑

j∈J

zj −
∑

i∈I

zi),

∀zi ≤ xi, zi ∈ Zi
xi

and ∀zj ≥ yj, zj ∈ Zj
yj

. (5.4)

Now let u =
∑

i∈I vi −∑
j∈J uj, vi ∈ Zi

xi
, uj ∈ Zj

yj
and u ≤ ω. Let zi = xi ∧ vi,

zj = yj ∨ uj for all i, j. Since Zi
x and Zj

y were assumed to be lattices, we have
zi ∈ Zi

xi
and zj ∈ Zj

yj
for all i, j and also

u′ ≤ u ≤ ω, u′ =
∑

i

zi −
∑

j

zj,

and ∑

i

(xi − zi) +
∑

j

(zj − yj) = ω − u′ ≥ u− u′ ≥ 0.

Using Riesz’s decomposition property (see for example th.1.2, p.3 in Aliprantis
and Burkinshaw [6]), we may find v′i, i ∈ I and u′j, j ∈ J such that

0 ≤ v′i ≤ xi − zi, 0 ≤ u′j ≤ zj − yj,
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and
∑

v′i +
∑

u′j = u−u′. Remembering that K is an ideal and that Zi
xi

+K+ ⊂
Zi

xi
, Zj

yj
−K+ ⊂ Zj

yj
, one gets v′i, u

′
j ∈ K and

xi ≥ v′i + zi ∈ Zi
xi

, yj ≤ zj − u′j ∈ Zj
yj

, ∀i ∈ I, ∀j ∈ J. (5.5)

Now
u = u′ +

∑

i∈I

v′i +
∑

j∈J

u′j =
∑

i∈I

(zi + v′i)−
∑

j∈J

(zj − u′j) ⇒

ω − u =
∑

i∈I

(xi − (zi + v′i))−
∑

j∈J

(yj − (zj − u′j)),

that, in view of (5.4), (5.5), gives us the result.
To end the proof, we need to verify (2.13). Since we assumed ωi ∈ Zi

xi
for

each i ∈ I, we can find zi ∈ Zi
xi

such that zi ≤ xi ∧ ωi. Now subtracting p · zi

from the left and the right sides of equalities p ·xi = p ·ωi +
∑

j θj
i p ·yj, and using

(2.10), we obtain for every i ∈ I

π · (xi − zi) = p · (ωi − zi) +
∑

j∈J

θj
i p · yj.

Analogously, since 0 ∈ Zy
yj

, , we have y+
j ∈ Zy

yj
for each j ∈ J . Now adding

∑
j θj

i p · y+
j to the right and the left sides of latter equalities and using (2.11), we

get

π · (xi − zi) +
∑

j∈J

θj
i π · (y+

j − yj) = p · (ωi − zi) +
∑

j∈J

θj
i p · y+

j , ∀i ∈ I.

But ωi ≥ zi, y+
j ≥ 0 and p ≥ π|K imply

p · (ωi − zi) +
∑

j∈J

θj
i p · y+

j ≥ π · (ωi − zi) +
∑

j∈J

θj
i π · y+

j , ∀i ∈ I

hence
π · xi ≥ π · ωi +

∑

j∈J

θj
i π · yj, ∀i ∈ I.

That all these inequalities are actually equalities comes from the fact that (x, y)
is feasible.

Proof of Proposition 2.2. Let us apply Proposition 2.1 and consider π = (∨i∈Iπi)∨
(∨j∈Jπj), such that π, πi and πj satisfy the relations (2.9)–(2.13). By (SA)(iii),
we have π ∈ (L, τ)′. We first show that π|K′ = p.

Take any y ∈ K ′. Since K ′ is an ideal of L we have y+, y− ∈ K ′. Now since
Z =

∑
i∈I(Z

i
xi
∩K ′)−∑

j∈J(Zj
yj
∩K ′) is radial in K ′ at the point ω, we may find

real λ > 0 such that ω − λy+, ω − λy− ∈ Z, that due to (2.12) gives

π · (ω − (ω − λy+)) = p · (ω − (ω − λy+)) ⇒ λπ · y+ = λp · y+ ⇒ π · y+ = p · y+

and analogously π · y− = p · y−. Since y = y+ − y−, we conclude π|K′ = p|K′ .
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To prove the second part of the proposition, recall that for every i ∈ I,

πi · V i
xi
≥ πi · xi, xi + vi ∈ V i

xi
∩ Zi

xi
and for every j ∈ J , πj · V j

yj ≤ πj · yj,
yj−vj ∈ V j

yj
∩Zj

yj
. In view of the openness of V i

xi
, the relation πi ·(xi+vi) = πi ·xi

implies πi = 0. Analogously, the relation πj · (yj − vj) = πi · yj implies πj = 0.
As πi = 0, ∀i ∈ I and πj = 0, ∀j ∈ J imply, by the definition of π, π = 0 which
contradicts π|L(u)

= p|L(u)
6= 0, it follows that there exists some πi or πj such that

π · vi > 0 or πj · vj > 0.
Let, without loss of generality, i0 ∈ I be such that πi0 · vi0 > 0. Define

zi0 = (xi0 +vi0)∧xi0 . We note that zi0 ∈ Zi0
xi0

. Applying Proposition 2.1, we get:

π·vi0 = p·vi0 = p·(xi0+vi0−zi0)+p·(zi0−xi0) ≥ πi0 ·(xi0+vi0−zi0)+πi0 ·(zi0−xi0) =
πi0 · vi0 > 0.

Proof of Theorem 2.1. For each i ∈ I, take and fix any x′i ∈ Pi(xi)∩Axi
, where the

set Axi
, radial at xi in L, is chosen from (2.2). Due to (2.2) and to the convexity

of Pi(xi), one can find ui ∈ Zi
xi

such that ui ≤ x′i and define vi = ui ∧ xi. In
view of the assumptions, we conclude vi ∈ Zi

xi
. Now applying (2.9), we obtain

πi · (x′i − vi) ≥ πi · (xi − vi). This, (2.10) and π ≥ πi allows us to write

π · (x′i − xi) + p · (xi − vi) = π · (x′i − xi) + π · (xi − vi) = π · (x′i − vi) ≥
πi · (x′i − vi) ≥ πi · (xi − vi) = p · (xi − vi)

which implies π · (x′i − xi) ≥ 0. We have thus proved for each i ∈ I

π · (co Pi(xi) ∩ Axi
) ≥ π · xi.

Since Axi
is radial at xi in L, we conclude

π · Pi(xi) ≥ π · xi, ∀i ∈ I,

that proves condition (i) of the definition of quasiequilibrium.
The proof of (ii) can be given symmetrically. Let j and y′j ∈ Yj ∩ Ayj

be
fixed. Due to (2.4), one can find uj ∈ Zj

yj
such that uj ≥ y′j. Define vj = uj ∨ yj.

Now (2.9) gives πj · (y′j − vj) ≤ πj · (yj − vj). This, (2.11) and π ≥ πj allow us
to write

π · (y′j − yj) + p · (yj − vj) = π · (y′j − yj) + π · (yj − vj) = π · (y′j − vj) ≤
πj · (y′j − vj) ≤ πj · (yj − vj) = p · (yj − vj)

which implies π · (y′j − yj) ≤ 0. We have thus proved for every j ∈ J ,

π · (Yj ∩ Ayj
) ≤ π · yj.

Since each Ayj
is radial at yj in L, we conclude

π · Yj ≤ π · yj, ∀j ∈ J.

At this point, let us remark that we did not prove that π 6= 0. It will follow from
the nontriviality of (x, y, π). To finish the proof, we first show the nontriviality
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of (x, y, π) under the additional assumption that p · x′i0 < p · xi0 for some i0 ∈ I
and some x′i0 ∈ Xi0 ∩ Zi0

xi0
. Indeed, let us set z = xi0 ∧ x′i0 , getting z ∈ Zi0

xi0
.

Using x′i0 − z ≥ 0, that, by p ≥ π|K , implies p · (x′i0 − z) ≥ π · (x′i0 − z) and
remembering (2.10), one can write

π · (x′i0 − xi0) = π · (x′i0 − z) + π · (z − xi0)

≤ p · (x′i0 − z) + p · (z − xi0) = p · (x′i0 − xi0) < 0,

which proves in this case that (x, y, π) is nontrivial.
In the other case, it suffices to apply Proposition 2.2 and to show that (x, y, π)

is a quasiequilibrium of E and to use (2.14) to see that (x, y, π) is nontrivial if
nontrivial properness vectors at (x, y) satisfy (2.14).

Proof of Lemma 2.2. Let us suppose (2.15) for some z ∈ Z, that is,

∅ 6= Uz ∩ ({az} − L+) ⊂ Z and z ∈ Uz ∩ ({az} − L+)

and prove that
z ∈ Uz ∩ ({az} − L+) ∩K ⊂ Z ∩K.

For all z′ ∈ Uz∩({az}−L+), for all λ : 0 < λ ≤ 1, using the fact that Uz is convex
and τ -open, we get z+λ(z′−z) ∈ Uz∩({az}−L+). Thus z ∈ Uz ∩ ({az} − L+) ⊂
Z. Now, as proved in Podczeck, ({az} − L+) ∩K = {az} − L+. Since Uz is τ -
open, one has also

Uz ∩ ({az} − L+) ∩K = Uz ∩ ({az} − L+) ∩K,

hence z ∈ Uz ∩ ({az} − L+) ∩K ⊂ Z ∩K.
The case of (2.16) can be considered symmetrically.

Now since z is an arbitrary point of Z, we have Z ⊂ Z ∩K. The reverse
inclusion Z ∩K ⊂ Z follows from the assumption that Z is τ -closed.

Proof of Proposition 3.1. By assumption, K is a principal ideal of L generated by
(for example) e ∈ L, e > 0, which, in view of the F -properness of E relative to K
at (x, y), contains each xi, ωi, i ∈ I, yj, j ∈ J . Let us recall that K = L(e) can
be endowed with the Riesz norm ‖x‖e = inf{λ > 0 | |x| ≤ λe}, so that the unit-
ball is the order interval [−e, +e]. Moreover, as remarked by Podczeck [24], the
fact that on L(e) the norm topology is finer than the topology induced by τ still
holds true when the assumptions (SA) replace the classical assumption that L is
locally convex-solid. In fact, due to SA(iii), the unit-ball is σ(L′, L)-bounded,
thus τ -bounded. In what follows, we will write L(e)′ for (L(e), ‖ · ‖e)

′.
Let

G
def
= co

(⋃

i∈I

(Pi(xi) ∩ L(e)−∑

j∈J

θj
i (Yj ∩ L(e))− {ωi})

)
.

From F -properness at xi of preference Pi together with the assumptions on E ,

we deduce that G 6= ∅ and that xi ∈ co Pi(xi) ∩ L(e)
‖·‖e

. It is easily verified that
(x, y) ∈ Cf (E) implies (x, y) ∈ Cf (E|L(e)

), hence 0 /∈ G. On the other hand, it
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follows also from the F -properness at xi of Pi that G has a nonempty ‖·‖e-interior.
The rest of the proof is routine. From the classical separation theorem, there
exists p ∈ L(e)′ such that x′i ∈ Pi(xi)∩L(e) implies p·x′i ≥ p·xi = p·ωi+

∑
j θj

i p·yj

and y′j ∈ Yj∩L(e) implies p·y′j ≤ p·yj. Then (x, y, p) is a quasiequilibrium of E|K .
Since L(e), endowed with the Riesz norm, is a Banach lattice, p ∈ (L(e),≤)∼.

Proof of Lemma 3.1. Recall that u =
∑

i∈I |ωi| + ∑
i∈I |xi| + ∑

j∈J |yj|. Let us
define

v =
1

2
(
∑

i∈I

ω+
i +

∑

i∈I

x+
i +

∑

j∈J

y−j ).

Easy calculations show that ω − v = −1
2
(
∑

i∈I ω−i +
∑

i∈I x−i +
∑

j∈J y+
j ) =

1
2

(
(−∑

i∈I x−i −
∑

j∈J y+
j ) + (−∑

i∈I ω−i )
)
. Now, observe that, in view of the

lattice properties of Zi
xi

and Zj
yj

and the fact that L(u) is an ideal, the

points −∑
i∈I x−i −

∑
j∈J y+

j and −∑
i∈I ω−i both belong to

∑
i∈I(Z

i
xi
∩ L(u)) −∑

j∈J(Zj
yj
∩ L(u)). All lattices, being comprehensive, are convex, so that

ω− v ∈ ∑
i∈I(Z

i
xi
∩L(u))−∑

j∈J(Zj
yj
∩L(u)). By comprehensivity of this set we

have also
[ω − v, ω + v] ⊂ ∑

i∈I

(Zi
xi
∩ L(u))−∑

j∈J

(Zj
yj
∩ L(u)).

Furthermore, from ω > 0, it follows that
∑

i∈I ω+
i >

∑
i∈I ω−i and

∑
i∈I x+

i +∑
j∈J y−j >

∑
i∈I x−i +

∑
j∈J y+

j , that implies

2
∑

i∈I

ω+
i >

∑

i∈I

|ωi|

and
2(

∑

i∈I

x+
i +

∑

j∈J

y−j ) >
∑

i∈I

|xi|+
∑

j∈J

|yj|.

Summing the last relations, we obtain 4v > u and can conclude that [ω− 1
4
u, ω+

1
4
u] ⊂ ∑

i∈I(Z
i
xi
∩L(u))−∑

j∈J(Zj
yj
∩L(u)). As [ω− 1

4
u, ω + 1

4
u] is a ball centered

at ω in L(u) endowed with the Riesz norm || · ||ω, the set
∑

i∈I(Z
i
xi
∩ L(u)) −∑

j∈J(Zj
yj
∩ L(u)) is radial at ω in L(u).
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