On minimal factorizations of words as products of palindromes

A. Frid, S. Puzynina, L. Zamboni

June 17, 2012

Abstract

Given a finite word u, we define its palindromic length $|u|_{\text{pal}}$ to be the least number n such that $u = v_1v_2\ldots v_n$ with each v_i a palindrome. As each letter is a palindrome we have $|u|_{\text{pal}} \leq |u|$. Let k be a positive integer. In this note we prove that if an infinite word w is k-power free, then for each positive integer n there exists a factor u of w whose palindromic length $|u|_{\text{pal}} > n$. We also obtain an analogous result in the context of privileged words recently introduced by Kellendonk, Lenz and Savinien.

Let A be a finite non-empty set, and let A^+ denote the set of all finite non-empty words in A. A word $v = v_0v_1\ldots v_n \in A^+$ is called a palindrome if $v_i = v_{n-i}$ for each $i = 0, \ldots, n$. In particular each $a \in A$ is a palindrome. We also regard the empty word as a palindrome. For each finite word $u \in A^+$ we define its palindromic length, denoted $|u|_{\text{pal}}$ to be the least number n such that $u = v_1v_2\ldots v_n$ with each v_i a palindrome. Clearly $|u|_{\text{pal}} \leq |u|$ where $|u|$ denotes the length of u. For example, $|010010011010100|_{\text{pal}} = 1$ while $|0100111|_{\text{pal}} = 3$. Note that 0100111 may be expressed as a product of 3 palindromes in two different ways: $(0)(1001)(1)$ and $(010)(0)(11)$. In [2], O. Ravsky obtains an intriguing formula for the supremum of the palindromic lengths of all binary words of length n.

Recently, J. Kellendonk, D. Lenz and J. Savinien [1] introduced a new class of words they call privileged words. Privileged words are defined recursively: First, the empty word and each element $a \in A$ is privileged. Next, a word $u \in A^+$ we define its palindromic length, denoted $|u|_{\text{pal}}$ to be the least number n such that $u = v_1v_2\ldots v_n$ with each v_i a palindrome. Clearly $|u|_{\text{pal}} \leq |u|$ where $|u|$ denotes the length of u. For example, $|0010110011010100|_{\text{pal}} = 1$ while $|0010111|_{\text{pal}} = 3$. Note that 0010111 may be expressed as a product of 3 palindromes in two different ways: $(0)(010110011010)(0)$ or $(00)(1011001101)(00)$. We note that 00101100110100 may be written as a product of 3 privileged words in more than one way: $(0)(010110011010)(0)$ or $(00)(1011001101)(00)$.

*Corresponding author, Sobolev Institute of Mathematics SB RAS; supported in part by Presidential grant MK-4075.2012.1 and by RFBR grant 12-01-00089.

†Sobolev Institute of Mathematics SB RAS and University of Turku; supported in part by Academy of Finland (grant 251371) and by RFBR (grants 10-01-00424 and 12-01-00448)

‡Université Lyon I and University of Turku, supported in part by a FiDiPro grant from the Academy of Finland.
Let \(k \) be a positive integer. A word \(v \in A^+ \) is called a \(k \)-power if \(v = u^k \) for some word \(u \in A^+ \). An infinite word \(w = w_0 w_1 w_2 \ldots \in \mathbb{A}^\mathbb{N} \) is said to be \(k \)-power-free if no factor \(u \) of \(w \) is a \(k \)-power. For instance, the Thue-Morse word 011010011010110100110110010110... fixed by the morphism \(0 \rightarrow 01, 1 \rightarrow 10 \) is 3-power free.

Theorem 1 Let \(k \) be a positive integer and \(w = w_0 w_1 w_2 \ldots \in \mathbb{A}^\mathbb{N} \). If \(w \) is \(k \)-power free, then for each positive integer \(n \) there exist prefixes \(u \) and \(v \) of \(w \) with \(|u|_{\text{pal}} > n \) and \(|v|_{\text{priv}} > n \).

Given an infinite word \(w = w_0 w_1 w_2 \ldots \in \mathbb{A}^\mathbb{N} \) we set \(w[i..j] = w_i w_{i+1} \ldots w_j \). The proof of Theorem 1 will make use of the following lemmas:

Lemma 2 Let \(u \) be a palindrome (respectively privileged). Then for every palindromic (respectively privileged) proper prefix \(v \) of \(u \), we have that \(u \) is \((|u| - |v|)\)-periodic.

Proof. First suppose that \(u \) and \(v \) are palindromes with \(v \) a proper prefix of \(u \). Then \(v \) is also a suffix of \(u \) and hence \(u \) is \((|u| - |v|)\)-periodic. Next suppose \(u \) and \(v \) are privileged words with \(v \) a proper prefix of \(u \). We will prove that \(v \) is also a suffix of \(u \). We proceed by induction on \(|u|\). The result is vacuously true for \(|u| = 1 \). Next suppose \(|u| > 1 \). Then \(u \) is a complete first return to a privileged word \(u' \) with \(|u'| < |u| \). We claim that \(|v| \leq |u'| \). In fact, suppose to the contrary that \(|v| > |u'| \). Then \(u' \) would be a proper prefix of \(v \) and hence by induction hypothesis \(u' \) is also a suffix of \(v \). This means that \(u' \) occurs at least three times within \(u \) (as a prefix of \(v \), as a suffix of \(v \), and as a suffix of \(u \)). This contradicts that \(u \) is a complete first return to \(u' \). Having established that \(|v| \leq |u'| \), it follows that \(v \) is a suffix of \(u' \). In fact, if \(|v| = |u'| \), then \(v = u' \) while if \(|v| < |u'| \), then by induction hypothesis \(v \) is a suffix of \(u' \). As \(u' \) is a suffix of \(u \) we obtain that \(v \) is a suffix of \(u \) as required. Whence, \(u \) is \((|u| - |v|)\)-periodic. \(\Box\)

Lemma 3 Suppose the infinite word \(w \) is \(k \)-power-free. If \(w[i_1..i_2] \) and \(w[i_1..i_3] \) are palindromes (respectively privileged) with \(i_3 > i_2 \), then

\[
\frac{|w[i_1..i_3]|}{|w[i_1..i_2]|} \geq 1 + \frac{1}{k-1}.
\]

Proof. By Lemma 2, the word \(w[i_1..i_3] \) is \((i_3 - i_2)\)-periodic; at the same time, it cannot contain a \(k \)-power, so, \(|w[i_1..i_3]| < k(i_3 - i_2)\). Thus,

\[
\frac{|w[i_1..i_3]|}{|w[i_1..i_2]|} = \frac{|w[i_1..i_3]|}{|w[i_1..i_3]| - (i_3 - i_2)} > \frac{|w[i_1..i_3]|}{(1 - \frac{1}{k}) |w[i_1..i_3]|} = 1 + \frac{1}{k-1}.
\]

\(\Box\)

Lemma 4 Let \(N \) be a positive integer. Then for each \(i \geq 0 \), the number of palindromes (respectively privileged words) of the form \(w[i..j] \) of length less or equal to \(N \) is at most \(2 + \log_{k/(k-1)} N \).

Proof. For each \(i \geq 0 \), the length of the shortest non-empty palindrome (respectively privileged word) beginning in position \(i \) is equal to 1. By the previous lemma, the next palindrome (respectively privileged word) beginning in position \(i \) is of length at least \(\frac{k}{k-1} \), and the one after that is of length at least \(\left(\frac{k}{k-1}\right)^2 \), and so on. The longest one is of length at least \(\left(\frac{k}{k-1}\right)^n \leq N \), so that \(n \leq \log_{k/(k-1)} N \), and the total number \(n + 1 \) of such words is at most \(1 + \log_{k/(k-1)} N \). Adding the empty word which is a palindrome gives the desired result. \(\Box\)

Proof of Theorem 1. Fix a positive integer \(n \) and let \(N \) be a positive integer satisfying

\[
(2 + \log_{k/(k-1)} N)^n < N.
\]
By the previous lemma, the number of prefixes of w of the form $v_1v_2\ldots v_n$ where each v_i is a palindrome (respectively a privileged word) of length less or equal to N is at most $(2 + \log_2(k/(k-1))N)^n$, and hence at most N. But w has N-many non-empty prefixes of length less or equal to N. This means that there exist prefixes u and v of length less or equal to N such that $|u|_{\text{pal}} > n$ and $|v|_{\text{priv}} > n$.

As an immediate corollary we have:

Corollary 1 Fix a positive integer n. For any Sturmian word w whose slope has bounded partial quotients, there exist prefixes u and v of w such that $|u|_{\text{pal}} > n$ and $|v|_{\text{priv}} > n$.

In fact, we are able to extend the result of Theorem 1 to a wider class of words, including the Sierpinski word. However the method of proof is considerably more involved.

Thus we propose the following open problem:

Question 5 Does there exist an aperiodic word w and a positive integer n such that $|u|_{\text{pal}} \leq n$ (respectively $|u|_{\text{priv}} \leq n$) for each factor u of w?

Even if the answer to the above question turns out to be false, this does not give a characterization of aperiodic words. In fact, some ultimately periodic words contain factors having arbitrarily large palindromic lengths, for example, $w = (110100)^\omega$.

We prove the following property of ultimately periodic words with a uniform bound on the palindromic length of its factors:

Proposition 6 Let n be an integer, w an ultimately periodic word such that $|u|_{\text{pal}} \leq n$ for each factor u of w. Then w has a tail w' of the form $w' = v(p_1p_2)^\omega$, where p_1 and p_2 are palindromes.

Proof. Let w' be a tail of w having period t. Consider a factor u of w' with $|u| > tn$. Then u can be factored as $u = v_1v_2\ldots v_m$ with $m \leq n$ and each v_i a non-empty palindrome. At least one of the palindromes v_i in this factorization has length greater than t. So, t is a period of this long palindrome. Now the proposition follows from the well-known fact that a period of a palindrome has the form p_1p_2, where p_1 and p_2 are palindromes.

Proposition 6 implies that if the answer to Question 5 is “no”, then an infinite word w having with a uniform bound on the palindromic length of its factors is ultimately periodic, and moreover its period has the form p_1p_2, where p_1 and p_2 are palindromes.

The authors are grateful to Michelangelo Bucci and Alessandro de Luca for fruitful discussions.

References
