EN|RU
English version:
Journal of Applied and Industrial Mathematics, 2016, 10:4, 556-559

Volume 23, No 4, 2016, P. 26-34

UDC 519.7
A. M. Romanov
On the embedding of constant-weight codes into perfect codes

Abstract:
We show that each $q$-ary constant-weight code of weight 3, minimum distance 4, and length $m$ can be embedded in a $q$-ary 1-perfect code of length $n = (q^{m−1})/(q−1)$.
Bibliogr. 10.

Keywords: Hamming code, nonlinear perfect code, constant-weight code, $i$-component.

DOI: 10.17377/daio.2016.23.533

Alexander M. Romanov 1
1. Sobolev Institute of Mathematics,
4 Koptyug Ave., 630090 Novosibirsk, Russia
e-mail: rom@math.nsc.ru

Received 22 March 2016
Revised 26 April 2016

References

[1] Yu. L. Vasil’ev, On nongroup close-packed codes, in A. A. Lyapunov, ed., Problemy kibernetiki (Problems of Cybernetics), Vol. 8, pp. 375–378, Fizmatgiz, Moscow, 1962.

[2] A. M. Romanov, A survey of methods for constructing nonlinear perfect binary codes, Diskretn. Anal. Issled. Oper., Ser. 1, 13, No. 4, 60–88, 2006. Translated in J. Appl. Ind. Math., 2, No. 2, 252–269, 2008.

[3] A. M. Romanov, On admissible families of components of Hamming codes, Diskretn. Anal. Issled. Oper., 19, No. 2, 84–91, 2012. Translated in J. Appl. Ind. Math., 6, No. 3, 355–359, 2012.

[4] S. V. Avgustinovich and D. S. Krotov, Embedding in a perfect code, J. Comb. Des., 17, No. 5, 419–423, 2009.

[5] T. Etzion and A. Vardy, Perfect binary codes: Constructions, properties, and enumeration, IEEE Trans. Inf. Theory., 40, No. 3, 754–763, 1994.

[6] T. Etzion, Nonequivalent $q$-ary perfect codes, SIAM J. Discrete Math., 9, No. 3, 413–423, 1996.

[7] D. S. Krotov and E. V. Sotnikova, Embedding in $q$-ary 1-perfect codes and partitions, Discrete Math., 338, No. 11, 1856–1859, 2015.

[8] B. Lindström, On group and nongroup perfect codes in $q$ symbols, Math. Scand., 25, 149–158, 1969.

[9] K. T. Phelps and M. Villanueva, Ranks of $q$-ary 1-perfect codes, Des. Codes Cryptogr., 27, No. 1–2, 139–144, 2002.

[10] J. Schönheim, On linear and nonlinear single-error-correcting $q$-ary perfect codes, Inform. Control, 12, 23–26, 1968.
 © Sobolev Institute of Mathematics, 2015