English version:
Journal of Applied and Industrial Mathematics, 2016, 10:1, 51-60

Volume 23, No 1, 2016, P. 17-34

UDC 519.174
Ts. Ch.-D. Batueva
Discrete dynamical systems with threshold functions of up to three variables

We propose a method for finding sources of discrete dynamical systems of the circulant type with a q-valued arbitrary function at the vertices. We find all the sources, all the fixed points and some cycles, as well as lengths of some maximal chains outside cycles for the systems with Boolean threshold functions of up to three variables at the vertices.
Tab. 1, ill. 4, bibliogr. 6.

Keywords: discrete dynamical system, circulant, gene network, functional graph, threshold function, source.

DOI: 10.17377/daio.2016.23.473

Tsyndyma Ch.-D. Batueva 1
1. Sobolev Institute of Mathematics,
4 Koptyug Ave., 630090 Novosibirsk, Russia
e-mail: batueva@math.nsc.ru

Received 7 February 2015
Revised 14 September 2015


[1] Ts. Ch.-D. Batueva, Properties of gene networks with threshold functions, Prikl. Diskretn. Mat., Suppl., No. 6, 72–73, 2013.

[2] Ts. Ch.-D. Batueva, Discrete dynamical systems with threshold functions at the vertices, Diskretn. Anal. Issled. Oper., 21, No. 4, 25–32, 2014.

[3] E. D. Grigorenko, A. A. Evdokimov, V. A. Likhoshvai, and A. I. Lobareva, The fixed points and cycles of automaton mappings modeling functioning of genetic networks, Vestn. TGU, Suppl., No. 14, 206–212, 2005.

[4] G. V. Demidenko, N. A. Kolchanov, V. A. Likhoshvai, Yu. G. Matushkin, and S. I. Fadeev, Mathematical modeling of regular contours of gene networks, Zh. Vychisl. Mat. Mat. Fiz., 44, No. 12, 2276–2295, 2004. Translated in Comput. Math. Math. Phys., 44, No. 12, 2166–2183, 2004.

[5] A. A. Evdokimov, Discrete models of gene networks: Analysis and complexity of functioning, Vychisl. Technol., 13, 2008 and Vestn. KazNU, Ser. Mat. Mekh. Inform., No. 3, 2008 (A joint issue based on Proc. Int. Conf. “Comput. Inf. Technol. Sci. Eng. Educ.”, Almaty, Kazakhstan, Sept. 10–14, 2008) Pt. II, pp. 31–37, Izd. KazNU, Almaty, 2008.

[6] A. A. Evdokimov and E. O. Likhovidova, A discrete model for a gene network of a circulant type with threshold functions, Vestn. TGU, Upr. Vychisl. Tech. Inform. No. 2, 18–21, 2008.

[7] A. A. Evdokimov and A. L. Perezhogin, Discrete dynamical systems of a circulant type with linear functions at the vertices of a network, Diskretn. Anal. Issled. Oper., 18, No. 3, 39–48, 2011. Translated in J. Appl. Ind. Math., 6, No. 2, 160–166, 2012.

[8] E. O. Kutumova and A. A. Evdokimov, Reversible states in functioning of regulatory loops in discrete models for gene networks, Vestn. TGU, Upr. Vychisl. Tech. Inform., No. 1, 85–94, 2011.

[9] V. A. Likhoshvai, V. P. Golubyatnikov, G. V. Demidenko, A. A. Evdokimov, I. I. Matveeva, and S. I. Fadeev, Theory of gene networks, in Sistemnaya komp’yuternaya biologiya (Computational Systems Biology), pp. 397–482, Izd. SO RAN, Novosibirsk, 2008.

[10] A. M. Nazhmidenova and A. L. Perezhogin, A discrete dynamical system on a double circulant, Diskretn. Anal. Issled. Oper., 21, No. 4, 80–88, 2014.

[11] O. Ore, Theory of Graphs, AMS, Providence, 1962 (AMS Colloq. Publ., Vol. 38). Translated under the title Teoriya grafov, Nauka, Moscow, 1980.

[12] A. A. Evdokimov and E. O. Kutumova, The discrete model of the gene networks regulatory loops with the threshold functions, in Abstr. 7th Int. Conf. Bioinform. Genome Regul. Struct.\Syst. Biol., Novosibirsk, Russia, June 20–27, 2010, p. 155, SB RAS Press, Novosibirsk, 2010.

[13] S. A. Kauffman, At Home in the Universe: The Search for the Laws of Self-Organization and Complexity, Oxford Univ. Press, New York, 1995.

[14] S. A. Kauffman and R. G. Smith, Adaptive automata based on Darwinian selection, Physica D, 22, No. 1–3, 68–82, 1986.

[15] R. Laubenbacher and P. Mendes, A discrete approach to top-down modeling of biochemical networks, in A. Kriete and R. Eils, eds., Computational Systems Biology, pp. 229–247, Elsevier Acad. Press, Burlington, MA, USA, 2005.
 © Sobolev Institute of Mathematics, 2015