ENRU  
Volume 22, No 2, 2015, P. 86–101 UDC 519.1
Keywords: stability of the solution, stability radius, Boolean polynomial, matroid, geometric configuration. DOI: 10.17377/daio.2015.22.469 Ruslan Yu. Simanchev ^{1,2} Received 11 December 2014 References[1] V. A. Emelichev, M. M. Kovalev, andM. K. Kravtsov, Mnogogranniki. Grafy. Optimizatsiya (Polyhedra. Graphs. Optimization), Nauka, Moscow, 1981.[2] V. P. Il’ev, S. D. Il’eva, and A. A. Navrotskaya, Approximation algorithms for graph approximation problems, Diskretn. Anal. Issled. Oper., 18, No. 1, 41–60, 2011. Translated in J. Appl. Ind. Math., 5, No. 4, 569–581, 2011. [3] V. P. Il’ev and G. Sh. Fridman, On the problem of approximation by graphs with a fixed number of components, Dokl. Akad. Nauk SSSR, 264, No. 3, 533–538, 1982. Translated in Sov. Math., Dokl., 25, 666–670, 1982. [4] A. V. Seliverstov, Polytopes and connected subgraphs, Diskretn. Anal. Issled. Oper., 21, No. 3, 82–86, 2014. [5] R. Yu. Simanchev and N. Yu. Shereshik, Integer models for the interruptoriented services of jobs by single machine, Diskretn. Anal. Issled. Oper., 21, No. 4, 89–101, 2014. [6] A. Schrijver, Theory of Linear and Integer Programming, Vol. 2, John Wiley & Sons, New York, 1986. Translated under the title Teoriya lineinogo i tselochislennogo programmirovaniya, Vol. 2, Mir, Moscow, 1991. [7] G. Sh. Fridman, A problem of graph approximation, Upr. Sist., 8, 73–75, 1971. [8] M. Grötschel, O. Holland, Solution of largescale symmetric travelling salesman problems, Math. Program., Ser. A, 51, No. 1–3, 141–202, 1991. [9] R. Shamir, R. Sharan, and D. Tsur, Cluster graph modification problems, Discrete Appl. Math., 144, No. 1–2, 173–182, 2004. 

© Sobolev Institute of Mathematics, 2015  