Volume 19, No 1, 2012, P. 4158
UDC 519.7
N. A. Kolomeec
Enumeration of bent functions on the minimal distance from the quadratic bent function
Abstract:
Constructing bent functions on the minimal distance from the quadratic bent function is studied. All such bent functions in $2k$ variables are obtained and it is shown that the number of them is equal to $2^k(2^1+1)\dots(2^k+1)$. A lower bound of the number of bent functions on the minimal distance from a Maiorana–McFarland bent function is given.
Tab. 1, bibliogr. 9.
Keywords: bent function, the minimal distance, quadratic bent function.
Kolomeec Nikolay Alexandrovich ^{1}
1. S. L. Sobolev Institute of Mathematics, SB RAS,
4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia
email: nkolomeec@gmail.com
