Computable numberings in the Ershov hierarchy
Serikzhan Badaev
Serikzhan.Badaev@kaznu.kz
Al-Farabi Kazakh National University

Mal’tsev Meeting
in the honor of 60th anniversary of Sergey S. Goncharov
Novosibirsk, October 12, 2011.
Numberings as a tool of and as a subject to study

Gödel and Turing codings in logic

Definition. Numbering of a countable set S is a surjective mapping $\nu : \omega \to S$.

η_ν stands for the numerical equivalence of ν: $x \eta_\nu y \leftrightarrow \nu(x) = \nu(y)$.

General theory of numberings is the theory of equivalences with respect to effective transformations over them.
Definition. Let $S_0 \subseteq S$ and let $\nu : \omega \to S_0$ and $\nu : \omega \to S$ be two numberings. Numbering ν_0 is reducible to numbering ν ($\nu_0 \leq \nu$) if $\nu_0(x) = \nu(f(x))$ for some computable function f and all $x \in \omega$.

If $\nu_0 \leq \nu$ we say also that ν_0 is computable relative to ν.

Numberings ν_0, ν_1 are called equivalent ($\nu_0 \equiv \nu_1$) if $\nu_0 \leq \nu_1$ and $\nu_1 \leq \nu_0$.
Approach of Goncharov-Sorbi (1997) to the notion of computable numbering.

Let C be a family of constructive objects described by ’expressions’ (programs) of some language \mathcal{L}. Suppose that the language \mathcal{L} is equipped with Gödel numbering γ for ’expressions’ of \mathcal{L}. Let i be an interpretation of the expressions from \mathcal{L}, i.e. let $i : \mathcal{L} \to C$ be any partial mapping. Then a numbering $\alpha : \omega \mapsto \mathcal{A} \subseteq C$ is called computable numbering (relative to an interpretation i) if there exists a computable function f s.t. for every $n \in \omega$, $\alpha(n) = i(\gamma_f(n))$.
Example: computable numberings in the arithmetical hierarchy.

Let C be the class Σ^0_{n+1}, \mathcal{L} be the set of all Σ_{n+1}-formulas of arithmetics of a free variable x, and let $i(n) = \{ a \mid \mathcal{N} \models \gamma_n(a) \}$. Then a numbering α of a family $\mathcal{A} \subseteq \Sigma^0_{n+1}$ is called Σ^0_{n+1}-computable if there exists a computable function f s.t., for every $m \in \mathbb{N}$,

$$\alpha(m) = \{ x \mid \mathcal{N} \models \gamma_f(m)(x) \}$$
Theorem (Goncharov and Sorbi)

A numbering α of a family A of Σ^0_{n+1} sets is Σ^0_{n+1}-computable $\iff \{ (m, x) \mid x \in \alpha(m) \} \in \Sigma^0_{n+1}$.

Theorem (Badaev and Goncharov, 2008)

A numbering α of a family A of hyperarithmetical Σ^0_a sets is Σ^0_a-computable $\iff \{ (m, x) \mid x \in \alpha(m) \} \in \Sigma^0_a$. Here a is a computable ordinal.
Computable numberings in hierarchies

Theorem (Goncharov and Sorbi)

A numbering α of a family \mathcal{A} of Σ^0_{n+1} sets is Σ^0_{n+1}-computable
$\iff \{(m, x) \mid x \in \alpha(m)\} \in \Sigma^0_{n+1}$.

Straightforward modification yields a criterion:
A numbering α of a family \mathcal{A} of Σ^{-1}_{n+1} sets is Σ^{-1}_{n+1}-computable
$\iff \{(m, x) \mid x \in \alpha(m)\} \in \Sigma^{-1}_{n+1}$.
Computable numberings in hierarchies

Theorem (Goncharov and Sorbi)

A numbering α of a family A of Σ_{n+1}^0 sets is Σ_{n+1}^0-computable $\iff \{ (m, x) \mid x \in \alpha(m) \} \in \Sigma_{n+1}^0$.

Straightforward modification yields a criterion:

A numbering α of a family A of Σ_{n+1}^{-1} sets is Σ_{n+1}^{-1}-computable $\iff \{ (m, x) \mid x \in \alpha(m) \} \in \Sigma_{n+1}^{-1}$.

Theorem (Badaev and Goncharov, 2008)

A numbering α of a family A of hyperarithmetic Σ_{α}^0 sets is Σ_{α}^0-computable $\iff \{ (m, x) \mid x \in \alpha(m) \} \in \Sigma_{\alpha}^0$. Here α is a computable ordinal.
Criterion for computable numberings in the Ershov hierarchy

Definition. Let a be a notation of a computable ordinal. Then a numbering α of a family \mathcal{A} of Σ_a^{-1} sets is Σ_a^{-1}-computable if
\[\{(m, x) \mid x \in \alpha(m)\} \in \Sigma_a^{-1}. \]

Theorem (Ospichev 2010). A set of numbers A is Σ_a^{-1}-set \iff there are a computable function $f(z, t)$ and a partial computable function $\gamma(z, t)$ such that, for all z,

1. $A(z) = \lim_t f(z, t)$, with $f(z, 0) = 0$;
2. $\gamma(z, t) \downarrow \Rightarrow \gamma(z, t + 1) \downarrow$, and $\gamma(z, t + 1) \leq_0 \gamma(z, t) <_0 a$;
3. $f(z, t + 1) \neq f(z, t) \Rightarrow \gamma(z, t + 1) \neq \gamma(z, t)$.

The partial function γ is called the *mind–change function* for A relatively to f.

Note:

The theorem is based on the concept of computable ordinals and the Ershov hierarchy, which are fundamental in computability theory. The criterion provides a method to determine if a set of numbers is computable in a certain complexity class under a given numbering scheme.
Rogers-Ershov semilattices

For $\mathcal{A} \subseteq \Sigma^i_a$, let $\text{Com}^i_a(\mathcal{A})$ be the set of all Σ^i_a-computable numberings of \mathcal{A}. Here a is an ordinal notation or $a \in \omega$ if $i = -1$ (hierarchy of Ershov), and $a \in \omega$ if $i = 0$ (arithmetical hierarchy).

$\langle \text{Com}^i_{n+1}(\mathcal{A}), \leq \rangle$ is the pre-ordered set.

Definition. Rogers-Ershov semilattice $\mathcal{R}^i_a(\mathcal{A})$ is the quotient structure $\langle \text{Com}^i_a(\mathcal{A})/\equiv, \leq \rangle$ w.r.t. equivalence of numberings.

Join in $\mathcal{R}^i_a(\mathcal{A})$ is easily induced by the direct sum of numberings:

$$(\alpha \oplus \beta)(2n) = \alpha(n), \quad (\alpha \oplus \beta)(2n + 1) = \beta(n)$$
A bit history on Rogers-Ershov semilattices

Rogers (1958): idea to study numbering up to equivalence, acceptable numberings
Mal’tsev (1961): discrete and effectively discrete families,
Ershov (1968): upper semilattices of computable numberings and open problems on them.

Problem of Ershov (1967–1968). Find a structural criterion for a family of c.e. sets to have one-element upper semilattice of computable numberings.
This problem is still open for infinite families but it seems me to be hopeless. Nevertheless it stimulated a lot of research in the field of computable numberings, especially in the fSU.
Cardinality of Rogers-Ershov semilattices in the classical case

Theorem (Khutoretskii, 1971). For every family \mathcal{A} of c.e. sets, the cardinality of the Rogers-Ershov semilattice $\mathcal{R}_{1}^{0}(\mathcal{A})$ can be infinite or equal to 0 or 1 only.

Theorem (Ershov) If $\mathcal{A} \subset \Sigma_{1}^{0}$ is a finite family then the Rogers-Ershov semilattice $\mathcal{R}_{1}^{0}(\mathcal{A})$ is infinite \iff \mathcal{A} contains a pair of embedded sets.

Theorem (Badaev,Goncharov,1998) There exists an infinite family \mathcal{A} of c.e. sets s.t. \mathcal{A} contains the least set under inclusion and $|\mathcal{R}_{1}^{0}(\mathcal{A})| = 1$.
Cardinality of Rogers-Ershov semilattices for the families in the arithmetical hierarchy

Generalized problem of Ershov. What is a possible cardinality of an upper semilattice of computable numberings?

Theorem (Goncharov and Sorbi, 1997) For every n and every computable family $\mathcal{A} \subseteq \Sigma_{n+2}^0$, $\mathcal{R}_{n+2}^0(\mathcal{A})$ is infinite \iff \mathcal{A} contains at least 2 sets.
Cardinality of Rogers-Ershov semilattices for the families in the difference hierarchy

It is easy to find families in the Ershov hierarchy with infinite semilattice of computable numberings since $\mathcal{R}^{-1}_a(A)$ is isomorphic to an ideal of $\mathcal{R}^{-1}_b(A)$ if $a \prec b$.

Theorem (Badaev, Talasbaeva, 2006) There exists a family $\mathcal{A} = \{A \subset B\} \subseteq \Sigma_2^{-1}$ s.t. $|\mathcal{R}_2^{-1}(\mathcal{A})| = 1$.

Main open problem. Does there exist a family of sets in the Ershov hierarchy with non-trivial finite Rogers-Ershov semilattice?
On cardinality of Rogers-Ershov semilattices of the families of two embedded sets

Theorem (Badaev, Manat, Sorbi, in preparation) For every notation a of a successor ordinal, there exists a family $\mathcal{A} = \{A \subset B\} \subseteq \Sigma_a^{-1}$ s.t. $|R_a^{-1}(\mathcal{A})| = 1$.

Theorem (Badaev, Manat, Sorbi, in preparation) If $A, B \in \Sigma_a^{-1}$, $A \subset B$, and $|a|_O$ is a limit ordinal s.t. there exists a partial computable function ψ such that for every $b_0, b_1 < O a$,

$$\psi(b_0, b_1) \downarrow < O a \& |b_0|_O + O |b_1|_O = |\psi(b_0, b_1)|_O,$$

then $R_a^{-1}(\{A, B\})$ is infinite.
This theorem is true for the notations of ω and ω^2.
Witnesses of the extremal elements in the Rogers-Ershov semilattice

Let $\mathcal{A} \subseteq \Sigma^i_a$ and let α be any numbering from $\text{Com}_{\alpha}^i(\mathcal{A})$.

α is called a principal numbering of \mathcal{A} if it induces the greatest element (if any) in the Rogers-Ershov semilattice $\mathcal{R}_a^i(\mathcal{A})$.

α is called a least numbering of \mathcal{A} if it induces the least element (if any) in $\mathcal{R}_a^i(\mathcal{A})$.

α is called a minimal numbering of \mathcal{A} if it induces a minimal element (if any) in $\mathcal{R}_a^i(\mathcal{A})$.
Principal numberings: general facts and ideas

What does it mean that a numbering α is ”principal” (Maltsev), ”acceptable” (Rogers), ”covering” (Uspensky)?

Theorem

1. Each of the considered classes Σ^i_a has a principal numbering π^i_a.
2. A numbering α of a family $A \subseteq \Sigma^i_a$ is computable \iff α is computable relative to (i.e. reducible to) π^i_a.

Remind the approach of Goncharov-Sorbi:
Explanation in terms of the Goncharov-Sorbi approach

Let \mathcal{C} be a family of constructive objects described by 'expressions' (programs) of some language \mathcal{L}. Suppose that the language \mathcal{L} is equipped with Gödel numbering γ for 'expressions' of \mathcal{L}.

Let i be an interpretation of the expressions from \mathcal{L}, i.e. let $i : \mathcal{L} \rightarrow \mathcal{C}$ be any partial mapping.

Then a numbering $\alpha : \omega \mapsto A \subseteq \mathcal{C}$ is called computable numbering (relative to an interpretation i) if there exists a computable function f s.t. for every $n \in \omega$, $\alpha(n) = i(\gamma f(n))$.
Principal numberings of finite families in the arithmetical hierarchy

Theorem (Lachlan, 1964) Every finite family $\mathcal{A} \subset \Sigma_1^0$ has a principal numbering.

Theorem (Badaev, Goncharov, Sorbi, 2003) For every n, if $\mathcal{A} \subset \Sigma_{n+2}^0$ is a finite family then \mathcal{A} has a principal numbering $\iff \mathcal{A}$ has the least set under inclusion.
Finite families with principal numberings in the Ershov hierarchy

Theorem (Abeshev, Badaev, 2009) For every n, every finite family which consists of finite extensions of any set $A \in \Sigma_{n+2}^{-1}$ has a principal numbering.

Theorem (Abeshev, Lempp, in preparation) If there are c.e sets A_0, A_1, B_0, B_1 and $A = A_0 \setminus A_1$ and $B = B_0 \setminus B_1$ such that

$$\forall x \ (x \in A_0 \Rightarrow x \notin A_1 \text{ or } x \notin B),$$
$$\forall x \ (x \in B_0 \Rightarrow x \notin B_1 \text{ or } x \notin A),$$

then the family $\{A, B\}$ has a principal numbering.
Finite families without principal numberings in the Ershov hierarchy

Theorem (Abeshev, Lempp, in preparation) There is a family which consists of disjoint two non-empty Σ^1_{-12} sets and has no principal numberings.

Theorem (Badaev, in preparation) For every n, there exists a two-element family $\mathcal{A} \subset \Sigma^{-1}_{n+2}$ which has no principal numberings. (The sets in this family have non-empty intersection)
Minimal numberings in the classical case

Theorem (Ershov) Every finite family $\mathcal{A} \subset \Sigma^0_1$ has a least numbering.

There are a lot of computable families of c.e. sets with minimal numberings. Mostly, these families have up to equivalence either one or infinitely many minimal numberings.

Theorem (Vjugin, 1971, Badaev, 1991) There exist computable families of c.e. sets without minimal numberings.

Open question (Ershov, the mid of 1960th) What is a possible number of minimal numberings of a family of c.e. set?

Open question (Goncharov, the mid of 1980th) Is there any computable family of c.e. sets which has exactly one minimal but non-least numbering?
Theorem (Badaev, Goncharov, 2003) Every infinite family $\mathcal{A} \subset \Sigma^0_{n+2}$ has infinitely many computable minimal numberings.

Theorem (Abeshev, Badaev, Manat, in preparation) For every notation a of a successor ordinal, there exists Σ^1_a-computable family without minimal numberings.
Minimal numberings of special types

Numbering α is called Friedberg (decidable, positive) numbering if the numerical equivalence η_α is identical (computable, computably enumerable).

For finite families, decidable \iff positive \iff minimal \iff least. In what follows, we will consider the infinite families only. In this case, every decidable numbering is equivalent to some Friedberg numbering, and decidable \Rightarrow positive \Rightarrow minimal. In general, these arrows are not invertible.

Theorem (Friedberg, Khutoretsky, Goncharov, Sorbi, Lempp, Solomon, Ospichev, and others) Each of classes Σ^i_a has infinitely many Friedberg numberings.

Theorem (Khutoretsky, Ershov, Talasbaeva, Manat, Sorbi) Each of classes Σ^0_1 and Σ^{-1}_a has infinitely many positive non-decidable numberings.
Theorem (Goncharov, 1980) For every n, there exists a family of c.e. sets which has exactly n Friedberg numberings.

Theorem (Badaev, 1994) If a family of c.e. sets has a Friedberg non-least numbering then it has infinitely many positive numberings.

Theorem (Badaev, Lempp, Kastermans, in progress) For every n, there exists a family of d.c.e. sets whose Rogers-Ershov semilattice has exactly n minimal elements and these elements are induced by Friedberg numberings.
Families with unique Friedberg but non-least numberings

Theorem (Goncharov, 1988) There exists a family of c.e. sets with exactly one Friedberg numbering which is not the least.

Theorem (Badaev, Manat, Sorbi, in progress) For every notation a of a successor ordinal, there exists Σ_a^{-1}-computable family with exactly one Friedberg numbering which is not the least.
Families without Friedberg numberings

Theorem (Manat, Sorbi, 2011) For every ordinal notation a, $a > \omega 1$, there exists Σ_{a}^{-1}-computable family which has no Friedberg numberings but has positive numberings.

Theorem (Ospichev, 2011) For every ordinal notations a, b with $|b|_\omega = |a|_\omega + 1$, there exists a family of Σ_{a}^{-1} sets which has no Σ_{a}^{-1}-computable Friedberg numberings but has a Σ_{b}^{-1}-computable Friedberg numbering.
Thank you for your attention!