COUNTING THE BACK-AND-FORTH TYPES

A. MONTALBAN

Given a class of structures \mathcal{K} and $n \in \omega$, we study the dichotomy between there being countably many n-back-and-forth equivalence classes and there being continuum many.

In the latter case we show that, relative to some oracle, every set can be coded in the $(n - 1)$st jump of some structure in \mathcal{K}. In this case we also show that if \mathcal{K} is Π_2 axiomatizable, every Turing degree above $0^{(n-1)}$ is the $(n - 1)$st jump degree of some structure in \mathcal{K}.

In the former case we show that there is a countable set of infinitary Π_n relations that captures all of the Π_n information about the structures in \mathcal{K}. In most cases where there are countably many n-back-and-forth equivalence classes, there is a computable description of them. We will show how to use this computable description to get a complete set of computably infinitary Π_n formulas. This will allow us to completely characterize the relatively intrinsically Σ^0_{n+1} relations in the computable structures of \mathcal{K}, and to prove that no Turing degree can be coded by the $(n - 1)$st jump of any structure in \mathcal{K} unless that degree is already below $0^{(n-1)}$.

The University of Chicago, Chicago (USA)

E-mail address: antonio@math.uchicago.edu