The diameter of permutation groups

Ákos Seress

August 2012
Cayley graphs

Definition

$G = \langle S \rangle$ is a group. The Cayley graph $\Gamma(G, S)$ has vertex set G with g, h connected if and only if $gs = h$ or $hs = g$ for some $s \in S$.

By definition, $\Gamma(G, S)$ is undirected.
Cayley graphs

Definition

\[G = \langle S \rangle \] is a group. The Cayley graph \(\Gamma(G, S) \) has vertex set \(G \) with \(g, h \) connected if and only if \(gs = h \) or \(hs = g \) for some \(s \in S \).

By definition, \(\Gamma(G, S) \) is undirected.

Definition

The diameter of \(\Gamma(G, S) \) is

\[
\text{diam } \Gamma(G, S) = \max_{g \in G} \min_{g = s_1 \cdots s_k, s_i \in S \cup S^{-1}} \ k
\]

(Same as graph theoretic diameter.)
Computing the diameter is difficult

NP-hard even for elementary abelian 2-groups (Even, Goldreich 1981)
Computing the diameter is difficult

NP-hard even for elementary abelian 2-groups (Even, Goldreich 1981)

Definition (informal)

A decision problem is in the complexity class NP if the yes answer can be checked in polynomial time.

A decision problem is NP-complete if it is in NP and all problems in NP can be reduced to it in polynomial time.
Computing the diameter is difficult

NP-hard even for elementary abelian 2-groups (Even, Goldreich 1981)

Definition (informal)

A decision problem is in the complexity class **NP** if the *yes* answer can be checked in polynomial time.

A decision problem is **NP-complete** if it is in NP and all problems in NP can be reduced to it in polynomial time.

A decision problem is **NP-hard** if all problems in NP can be reduced to it in polynomial time.
How large can be the diameter?

The diameter can be very small:

\[\text{diam } \Gamma(G, G) = 1 \]
How large can be the diameter?

The diameter can be very small:
\[\text{diam } \Gamma(G, G) = 1 \]

The diameter also can be very big:
\[G = \langle x \rangle \cong \mathbb{Z}_n, \quad \text{diam } \Gamma(G, \{x\}) = \lfloor n/2 \rfloor \]

More generally, \(G \) with large abelian factor group may have Cayley graphs with diameter proportional to \(|G|\).
Rubik’s cube

\[S = \{(1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)
 (11, 35, 27, 19), (9, 11, 16, 14)(10, 13, 15, 12)(1, 17, 41, 40)
 (4, 20, 44, 37)(6, 22, 46, 35), (17, 19, 24, 22)(18, 21, 23, 20)
 (6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11), (25, 27, 32, 30)
 (26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24),
 (33, 35, 40, 38)(34, 37, 39, 36)(3, 9, 46, 32)(2, 12, 47, 29)
 (1, 14, 48, 27), (41, 43, 48, 46)(42, 45, 47, 44)(14, 22, 30, 38)
 (15, 23, 31, 39)(16, 24, 32, 40)\} \]

\[\text{Rubik} \coloneqq \langle S \rangle, \ |\text{Rubik}| = 43252003274489856000. \]
Rubik’s cube

\[S = \{(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)
(11,35,27,19), (9,11,16,14)(10,13,15,12)(1,17,41,40)
(4,20,44,37)(6,22,46,35), (17,19,24,22)(18,21,23,20)
(6,25,43,16)(7,28,42,13)(8,30,41,11), (25,27,32,30)
(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24),
(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)
(1,14,48,27), (41,43,48,46)(42,45,47,44)(14,22,30,38)
(15,23,31,39)(16,24,32,40)\}\]

\[\text{Rubik} := \langle S \rangle, \quad |\text{Rubik}| = 43252003274489856000.\]

20 \leq \text{diam } \Gamma(\text{Rubik}, S) \leq 29 \ (\text{Rokicki 2009})
Rubik’s cube

\[\text{Rubik} := \langle S \rangle, \quad |\text{Rubik}| = 43252003274489856000. \]

\[20 \leq \text{diam } \Gamma(\text{Rubik}, S) \leq 29 \quad \text{(Rokicki 2009)} \]
\[\text{diam } \Gamma(\text{Rubik}, S \cup \{s^2 \mid s \in S\}) = 20 \quad \text{(Rokicki 2009)} \]
The diameter of groups

Definition

\[
\text{diam} \ (G) := \max_S \text{diam} \ \Gamma (G, S)
\]
The diameter of groups

Definition

\[\text{diam} (G) := \max_S \text{diam} \Gamma(G, S) \]

Conjecture (Babai, in [Babai, Seress 1992])

There exists a positive constant \(c \):

\[G \text{ simple, nonabelian} \Rightarrow \text{diam} (G) = O(\log^c |G|). \]
The diameter of groups

Definition

\[
\text{diam } (G) := \max_S \text{diam } \Gamma(G, S)
\]

Conjecture (Babai, in [Babai, Seress 1992])

There exists a positive constant \(c\):

\(G\) simple, nonabelian \(\Rightarrow \) \(\text{diam } (G) = O(\log^c |G|)\).

Conjecture true for

- \(\text{PSL}(2, p), \text{PSL}(3, p)\) (Helfgott 2008, 2010)
- Lie-type groups of bounded rank (Pyber, E. Szabó 2011) and (Breuillard, Green, Tao 2011)

Alternating groups ???
Alternating groups: why is it difficult?

Attempt # 1: Techniques for Lie-type groups
Diameter results for Lie-type groups are proven by product theorems:

Theorem

There exists a polynomial $c(x)$ such that if G is simple, Lie-type of rank r, $G = \langle A \rangle$ then $A^3 = G$ or

$$|A^3| \geq |A|^{1 + 1/c(r)}.$$

*In particular, for bounded r, we have $|A^3| \geq |A|^{1 + \varepsilon}$ for some constant ε.***
Alternating groups: why is it difficult?

Attempt # 1: Techniques for Lie-type groups
Diameter results for Lie-type groups are proven by product theorems:

Theorem

There exists a polynomial $c(x)$ such that if G is simple, Lie-type of rank r, $G = \langle A \rangle$ then $A^3 = G$ or

$$|A^3| \geq |A|^{1+1/c(r)}.$$ **In particular, for bounded r, we have** $|A^3| \geq |A|^{1+\varepsilon}$ **for some constant** ε.

Given $G = \langle S \rangle$, $O(\log \log |G|)$ applications of the theorem gives all elements of G.
Tripling length $O(\log \log |G|)$ times gives diameter $3^{O(\log \log |G|)} = (\log |G|)^c$.
Product theorems are false in A_n.

Example

$G = A_n$, $H \cong A_m \leq G$, $g = (1, 2, \ldots, n)$ (n odd).

$S = H \cup \{g\}$ generates G, $|S^3| \leq 9(m + 1)(m + 2)|S|$.

For example, if $m \approx \sqrt{n}$ then growth is too small.
Product theorems are false in A_n.

Example

$G = A_n$, $H \cong A_m \leq G$, $g = (1, 2, \ldots, n)$ (n odd).

$S = H \cup \{g\}$ generates G, $|S^3| \leq 9(m + 1)(m + 2)|S|$.

For example, if $m \approx \sqrt{n}$ then growth is too small.

Powerful techniques, developed for Lie-type groups, are not applicable.
Attempt # 2: construction of a 3-cycle

Any \(g \in A_n \) is the product of at most \((n/2) \) 3-cycles:

\[
(1, 2, 3, 4, 5, 6, 7) = (1, 2, 3)(1, 4, 5)(1, 6, 7)
\]

\[
(1, 2, 3, 4, 5, 6) = (1, 2, 3)(1, 4, 5)(1, 6)
\]

\[
(1, 2)(3, 4) = (1, 2, 3)(3, 1, 4)
\]
Attempt # 2: construction of a 3-cycle

Any $g \in A_n$ is the product of at most $(n/2)$ 3-cycles:

$(1, 2, 3, 4, 5, 6, 7) = (1, 2, 3)(1, 4, 5)(1, 6, 7)$

$(1, 2, 3, 4, 5, 6) = (1, 2, 3)(1, 4, 5)(1, 6)$

$(1, 2)(3, 4) = (1, 2, 3)(3, 1, 4)$

It is enough to construct one 3-cycle (then conjugate to all others).
Construction in stages, cutting down to smaller and smaller support.

Support of $g \in \text{Sym}(\Omega)$: $\text{supp}(g) = \{\alpha \in \Omega \mid \alpha^g \neq \alpha\}$.
The diameter of permutation groups

Ákos Seress

One generator has small support

Theorem (Babai, Beals, Seress 2004)

\[G = \langle S \rangle \cong A_n \text{ and } |\text{supp}(a)| < \left(\frac{1}{3} - \varepsilon \right)n \text{ for some } a \in S. \]

Then \(\text{diam} \Gamma(G, S) = O(n^{7+o(1)}) \).

Recent improvement:

Theorem (Bamberg, Gill, Hayes, Helfgott, Seress, Spiga 2012)

\[G = \langle S \rangle \cong A_n \text{ and } |\text{supp}(a)| < 0.63n \text{ for some } a \in S. \]

Then \(\text{diam} \Gamma(G, S) = O(n^c) \).
One generator has small support

Theorem (Babai, Beals, Seress 2004)

\[G = \langle S \rangle \cong A_n \text{ and } |\text{supp}(a)| < \left(\frac{1}{3} - \varepsilon \right)n \text{ for some } a \in S. \]

Then \(\text{diam} \Gamma(G, S) = O(n^{7+o(1)}) \).

Recent improvement:

Theorem (Bamberg, Gill, Hayes, Helfgott, Seress, Spiga 2012)

\[G = \langle S \rangle \cong A_n \text{ and } |\text{supp}(a)| < 0.63n \text{ for some } a \in S. \]

Then \(\text{diam} \Gamma(G, S) = O(n^{c}) \).

The proof gives \(c = 78 \) *(with some further work, \(c = 66 + o(1) \)).
How to construct one element with moderate support?

Up to recently, only one result with no conditions on the generating set.

Theorem (Babai, Seress 1988)

Given $A_n = \langle S \rangle$, there exists a word of length $\exp(\sqrt{n \log n(1 + o(1)))}$, defining $h \in A_n$ with $|\text{supp}(h)| \leq n/4$. Consequently

$$\text{diam} (A_n) \leq \exp(\sqrt{n \log n(1 + o(1)))}.$$
A quasipolynomial bound

Theorem (Helfgott, Seress 2011)

\[
\text{diam} \ (A_n) \leq \exp(O(\log^4 n \log \log n)).
\]

Babai’s conjecture would require
\[
\text{diam} \ (A_n) \leq n^{O(1)} = \exp(O(\log n)).
\]
The diameter of permutation groups

Ákos Seress

A quasipolynomial bound

Theorem (Helfgott, Seress 2011)

\[\text{diam} (A_n) \leq \exp(O(\log^4 n \log \log n)). \]

Babai’s conjecture would require

\[\text{diam} (A_n) \leq n^{O(1)} = \exp(O(\log n)). \]

Corollary

\[G \leq S_n \text{ transitive} \implies \text{diam} (G) \leq \exp(O(\log^4 n \log \log n)). \]
A quasipolynomial bound

Theorem (Helfgott, Seress 2011)
\[
\text{diam } (A_n) \leq \exp(O(\log^4 n \log \log n)).
\]

Babai’s conjecture would require
\[
\text{diam } (A_n) \leq n^{O(1)} = \exp(O(\log n)).
\]

Corollary
\[
G \leq S_n \text{ transitive} \implies \text{diam } (G) \leq \exp(O(\log^4 n \log \log n)).
\]

Corollary follows from

Theorem (Babai, Seress 1992)
\[
G \leq S_n \text{ transitive} \\
\implies \text{diam } (G) \leq \exp(O(\log^3 n)) \cdot \text{diam } (A_k) \text{ where } A_k \text{ is the largest alternating composition factor of } G.
\]
The main idea of (Babai, Seress 1988)

Given $\text{Alt}(\Omega) \cong A_n = \langle S \rangle$, construct $h \in A_n$ with $|\text{supp}(h)| \leq n/4$ as a short word in S.
The main idea of (Babai, Seress 1988)

Given \(\text{Alt}(\Omega) \cong A_n = \langle S \rangle \), construct \(h \in A_n \) with \(|\text{supp}(h)| \leq n/4 \) as a short word in \(S \).

\[\rho_1 = 2, \rho_2 = 3, \ldots, \rho_k \text{ primes: } \prod_{i=1}^{k} \rho_i > n^4 \]

Construct \(g \in G \) containing cycles of length \(\rho_1, \rho_1, \rho_2, \ldots, \rho_k \).

For \(\alpha \in \Omega \), let \(\ell_\alpha : \text{length of } g\text{-cycle containing } \alpha \).

For \(1 \leq i \leq k \), let \(\Omega_i := \{ \alpha \in \Omega : \rho_i \mid \ell_\alpha \} \).

Claim

There exists \(i \leq k \) with \(|\Omega_i| \leq n/4 \).

After claim is proven: take \(h := g^{\lfloor |g|/\rho_i \rfloor} \). Then \(\text{supp}(h) \subseteq \Omega_i \) and so \(|\text{supp}(h)| \leq n/4 \).
Proof of the claim

Claim

There exists \(i \leq k \) with \(|\Omega_i| \leq n/4 \).

Proof: On one hand,

\[
\sum_{\alpha \in \Omega} \sum_{p_i | \ell_\alpha} \log p_i \leq n \log n.
\]

On the other hand,

\[
\sum_{\alpha \in \Omega} \sum_{p_i | \ell_\alpha} \log p_i = \sum_{i=1}^{k} |\Omega_i| \log p_i.
\]

If all \(|\Omega_i| > n/4 \) then

\[
\sum_{i=1}^{k} |\Omega_i| \log p_i > \frac{n}{4} \log \left(\prod_{i=1}^{k} p_i \right) > n \log n,
\]

a contradiction.
Cost analysis

We considered p_1, \ldots, p_k so that $\prod_{i=1}^{k} p_i > n^4$. How large is k?

$$\prod_{p<x} p \approx e^x = n^4$$

so we have to take primes up to $x = \Theta(\log n)$, implying

$$\sum_{p<x} p = \Theta \left(\frac{\log^2 n}{\log \log n} \right).$$

(Order of magnitude can also be proven by elementary estimates on prime distribution.)

$$\text{length}_S(g) = O \left(n \frac{\log^2 n}{\log \log n} \right).$$
The diameter of permutation groups

Ákos Seress

Theorem (Landau 1907)

\[
\max\{|g| : g \in S_n\} = e^{\sqrt{n \log n} (1 + o(1))}.
\]

Hence \(\text{length}_{S}(h) = e^{\sqrt{n \log n} (1 + o(1))}\).
The diameter of permutation groups

Ákos Seress

Theorem (Landau 1907)

\[
\max\{|g| : g \in S_n\} = e^{\sqrt{n \log n}(1+o(1))}.
\]

Hence \(\text{length}_{S}(h) = e^{\sqrt{n \log n}(1+o(1))}\).

In the original proof, same procedure is iterated \(O(\log n)\) times; faster finish by Babai, Beals, Seress (2004).
The main idea of (Helfgott, Seress 2011)

Use basic data structures for computations with permutation groups (Sims, 1970)

Definition

A base for $G \leq \text{Sym}(\Omega)$ is a sequence of points $(\alpha_1, \ldots, \alpha_k)$: $G(\alpha_1, \ldots, \alpha_k) = 1$.

A base defines a point stabilizer chain

$$G^{[1]} \geq G^{[2]} \geq \cdots \geq G^{[k+1]} = 1$$

with $G^{[i]} = G(\alpha_1, \ldots, \alpha_{i-1})$.

Fixing (right) transversals T_i for $G^{[i]} \mod G^{[i+1]}$, every $g \in G$ can be written uniquely as $g = t_k \cdots t_2 t_1$, $t_i \in T_i$.
(H,S 2011) works with partial transversals: Suppose $G = \operatorname{Alt}(\Omega) = \langle A \rangle \cong A_n$ and there are $\alpha_1, \ldots, \alpha_m \in \Omega$:

$$|A_{(\alpha_1, \ldots, \alpha_{i-1})}| > 0.9n.$$

Key proposition of (H,S 2011), substitution for product theorems:
(H,S 2011) works with partial transversals: Suppose $G = \text{Alt}(\Omega) = \langle A \rangle \cong A_n$ and there are $\alpha_1, \ldots, \alpha_m \in \Omega$:

$$|A_{(\alpha_1, \ldots, \alpha_{i-1})}| > 0.9n.$$

Key proposition of (H,S 2011), substitution for product theorems:

Theorem

In $A^{\exp(O(\log^2 n))}$ there is a significantly longer partial transversal system or $A^{\exp(O(\log^4 n))}$ contains some permutation g with small support.
Proof techniques in (Helfgott, Seress 2011)

Subset versions of theorems of Babai, Pyber about 2-transitive groups and Bochert, Liebeck about large cardinality subgroups of A_n.

Combinatorial arguments, using random walks of quasipolynomial length on various domains to generate permutations that approximate properties of truly random elements of A_n.

Previous results on diam (A_n): main idea of (BS 1988), results of (BS1992), (BBS 2004).
Proof techniques in (Helfgott, Seress 2011)

Subset versions of theorems of Babai, Pyber about 2-transitive groups and Bochert, Liebeck about large cardinality subgroups of A_n.

Combinatorial arguments, using random walks of quasipolynomial length on various domains to generate permutations that approximate properties of truly random elements of A_n.

Previous results on $\text{diam} \ (A_n)$: main idea of (BS 1988), results of (BS1992), (BBS 2004).

Arguments are mostly combinatorial: the full symmetric group is a combinatorial rather than a group theoretic object.