ON CAUCHY AND MORERA TYPE CRITERIONS
FOR BOUNDEDNESS OF THE COEFFICIENT
OF DISTORTION

© Mikhail Korobkov
korob@math.nsc.ru
Sobolev Institute of Mathematics, Novosibirsk, Russia

We give criteria for a mapping to have bounded distortion in terms of an integral estimate of the multiplicity function without any a priori assumption on the differential properties of the mapping. In this talk we extend some results of [1].

Let Δ be a domain in \mathbb{R}^n, $n = 2, 3, \ldots$. Recall that a continuous mapping $f = (f_1, \ldots, f_n) : \Delta \to \mathbb{R}^n$ is a mapping with bounded distortion [2] if the following conditions are fulfilled:

(i) $f \in W_{loc}^{1,n}(\Delta)$;
(ii) The Jacobian $J(f, x) = \det(\frac{\partial f}{\partial x}) \geq 0$ almost everywhere (a.e.) in Δ;
(iii) There exists a constant $K \geq 1$ such that $|f'(x)|^n \leq Kn^{n/2}J(f, x)$ a.e. in Δ, where $|f'(x)| = \left(\sum_{k,l=1}^{n}(\frac{\partial f_k}{\partial x_l})^2 \right)^{1/2}$ is the Hilbert norm of the derivative $f'(x)$. The least constant K is called the distortion coefficient (dilatation) of f [2].

Denote the differential form $f_k \, dx_1 \wedge \cdots \wedge \hat{dx_l} \wedge \cdots \wedge dx_n$ by ω_{kl}. Given a ball $B = B(x, r) \subset \Delta$, consider the numerical $(n \times n)$-matrix

$$\Omega(B) = \left(\int_{\partial B} \omega_{kl}, \ 1 \leq k, l \leq n \right).$$

Endow the space \mathcal{M}_n of all $(n \times n)$-matrices with the Hilbert norm

$$|(a_{kl})| = \left(\sum_{k,l} a_{kl}^2 \right)^{1/2}.$$

Theorem. Let $f : \Delta \to \mathbb{R}^n$ be a continuous mapping of a domain $\Delta \subset \mathbb{R}^n$. Then $\exists K_0 > 1$ (K_0 doesn’t depend on f) such that f is a mapping with distortion at most $K \in [1, K_0]$ if and only if the inequalities

$$\left(\frac{\left|\Omega(B)\right|}{|B|} \right)^n \leq n^{n/2}K^n \frac{\int_{\partial B} N(f|_{B}, y) \, dy}{|B|} < \infty,$$

$$\det \Omega(B) \geq 0$$

hold for every ball $B = B(x, r)$ such that $B(x, 2r) \subset \Delta$.

Here we used the following notations. $|E|$ is the Lebesgue measure of a set E, $N(f|_E, \cdot)$ is the multiplicity function of the restriction $f|_E$, i.e., $N(f|_E, y) = \text{card} \left(f^{-1}(y) \cap E \right)$.

Remark. Under the extra topological assumption that f is sense-preserving, above Theorem was proved in [1, Theorem 1']. Thus, Theorem 1 is a substantial strengthening of Theorem 1’ of [1].

The author was supported by the Russian Foundation for Basic Research (Grant 05-01-00482-(a)) and the President of the Russian Federation (Grant MK-3778.2004.1)

REFERENCES