THE RIEMANN – HILBERT PROBLEM
FOR A CLASS OF MODEL VEKUA EQUATIONS
WITH SINGULAR DEGENERATION

© R. S. Saks
romen-saks@yandex.ru

Institute of Mathematics of the Ufa Scientific Center of RAS, Ufa, Russia

In the talk we consider model equations

$$\frac{\partial v}{\partial z} - \frac{\lambda + \delta|z|^s}{2\pi} v = 0,$$

depending on parameters \(\lambda, \delta \in \mathbb{C} \setminus \{0\} \) and \(s \in \mathbb{N} \), with the singular degeneration at \(z = 0 \) in the region \(G \setminus \{0\} = \{z: 0 < |z| < 1\} \) and with the boundary value condition

$$\Re v|_{\Gamma} = f(t).$$

If \(\lambda = 0 \) this equation is included in the more general class of equations studied by I. N. Vekua [1]. We have proved [6]:

Theorem. Let \(\lambda > 0, \delta > 0, s \in \mathbb{N} \) and \(f \in C^{1,\alpha}(\Gamma), 0 < \alpha \leq 1. \) Then the solution \(v \) of this problem is uniquely determined and \(v \) is given by the explicit formula. This solution belongs to the class

$$C(\overline{G}) \cap C^1(G \setminus \{0\}).$$

Remark 1 (Another known results). This problem is uniquely solvable in the cases

a) if \(\delta = 0 \), and the solution coincide with the Usmanov' solution [4];

b) if \(\lambda \neq 0, \arg \lambda \neq \pi \), and \(\delta \) is small [4];

c) if \(\lambda \) is small, \(\arg \lambda \neq \pi \), and \(\delta \) is arbitrary [5];

d) recently, A. Timofeef and his student from Syktyvkar University have turn up another value of \(\lambda \) and \(\delta \) for which the conclusion of Theorem is true . This paper will by published soon and these results will be in the talk.

In general case (\(\lambda, \delta \in \mathbb{C} \setminus \{0\} \)) we get to explicit formulas of solutions of this equation, depending on parameters \(a_0 \in \mathbb{R}, c_k \in \mathbb{C}, k \in \mathbb{N} \). Finally, we’ve proved that the solvability of this problem is equivalent to existence zeros for the functions \(h_k(\lambda, \delta) \). These functions are given by series.

Remark 2. In general case we don’t know the existence of \(\lambda, \delta, k \) such that \(h_k(\lambda, \delta) = 0 \). But from our formulas we can see that

a) The Fredholm alternative take a place, i. e., either the homogeneous problem has a nontrivial solution or the nonhomogeneous problem is solvable for all \(f \);

b) The number \(n \) of linear independent solutions of the homogeneous problem is equal to the number \(n' \) of the linear independent solvability conditions (or \(n = n' < \infty \) or \(n = n' = \infty \)).

Calculation experiments show that functions \(h_k(\lambda, \delta) \neq 0 \) if number \(k \geq N \).
REFERENCES

