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Overview of the talk

It is very natural to consider geometric structures on moduli

spaces or parameter spaces of deformations, or on the total space

of the deformation family.

The simplest example is the family of elliptic curves in Weier-

strass form:

y2 = 4x3 − g2x− g3,

where the parameter space is the space of (g2, g3) ∈ C2, where

g3
2 − 27g2

3 = 0 gives the discriminant locus, and the above equa-

tion defines a hyperplane in (x, y, g2, g3) ∈ C4 that is the universal

family of elliptic curves.



Overview of the talk

We will report on some results obtained from considerations in

the theory of modular forms and elliptic functions, prompted by

a question for relationship between the theory of modular forms

with the theory of Moyal products.

Via ideas from invariant theory, we arrive at some Poisson struc-

tures on the spaces mentioned on last slides.

Finally, we apply the construction of Poisson structures to the

invariant theory of binary polyhedral groups.



Overview of the talk

The theories of modular forms, invariant theory and Moyal prod-

uct seem to be three unrelated subjects, studied in different areas

of mathematics. Nevertheless, as pointed out by Zagier, in each

of these theories one can define a sequence of binary ”bracket

operations” that define algebraic structures of similar type.

These bracket operations are well studied in the latter two the-

ories, while they are relatively less well understood in the theory

of modular forms.

We will first to explain how to use the brackets in invariant theory

and Moyal product to understand the brackets in modular form

theory, then extend it to the theory of elliptic functions.



Modular Forms

A modular form of weight k is a holomorphic function f : H→ C
on the upper half plane H, such that the following conditions are

satisfied:

f(τ) =
∑
n≥0

anq
n, q = e2πiτ ,

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ),

for all

(
a b
c d

)
∈ SL2(Z).



The Ring of Modular Forms

Denote by Mk the vector space of modular forms of weight k,

and set M∗ =
⊕
k≥0Mk.

Then M∗ is a commutative ring under multiplication, such that

Mk ·Mk ⊂Mk+l.



Construction of Modular Forms

One easy way to construct modular forms is to consider the

Weierstrass P-function:

P(z; τ) =
1

z2
+

∑
(m,n)∈Z2−{(0,0)}

(
1

(z +m+ nτ)2
−

1

(m+ nτ)2

)
,

where τ ∈ H.

This is a meromorphic function on C with two periods 1 and τ ,

and double poles at m+ nτ , m,n ∈ Z.



From Weierstrass P-Function to Eisenstein series

Weierstrass P-function has the following Laurent expansion at

z = 0:

P(z; τ) =
1

z2
+
∞∑
n=1

(2n+ 1)G2n+2(τ)z2n,

where the coefficients G2k(τ) are the Eisenstein series:

G2k(τ) =
∑
m,n

′ 1

(m+ nτ)2k
.



Differential Equation Satisfied by Weierstrass P-Function

Let x = P(z; τ), y = P ′(z, τ). Then

y2 = 4x3 − g2x− g3,

where g2 = 60G4, g3 = 140G6.

Differentiate both sides:

P ′′(z; τ) = 6P(z; τ)2 −
g2

2
,

From this one derives recursion relations:

G2n =
3

(n− 3)(2n− 1)(2n+ 1)

n−2∑
r=2

(2r−1)(2n−2r−1)G2rG2n−2r.



Relationship to KdV Equation

Differentiate again:

P ′′′(z) = 12P(z)P ′(z).

This is a special case of the KdV equation.

This is the starting point for the relationship between theta func-

tions and solutions of KdV hierarchy.

It develops into Krichever construction.



Eisenstein Series as Modular Forms

The Eisensten series have the following properties (k > 1):

G2k(
aτ + b

cτ + d
) = (cτ + d)2kG2k(τ),

for

(
a b
c d

)
∈ SL2(Z) and

G2k(τ) =
|B2k|(2π)2k

(2k)!
+

2(−1)k(2π)2k

(2k − 1)!

∞∑
n=1

σ2k−1(n)qn,

where σk(n) =
∑
d|n d

k.

So when k > 1, G2k(τ) are modular forms of weight 2k.

In fact, M∗ = C[G4, G6].



Eisenstein Series E2

For simplicity of notations, let

E4(τ) =
32 · 5
π4

G4(τ) = 1 + 240
∞∑
n=1

σ3(n)qn,

E6(τ) =
33 · 5 · 7

2π6
G4(τ) = 1− 504

∞∑
n=1

σ5(n)qn,

One also needs:

E2(τ) = 1 + 24
∞∑
n=1

σ1(n)qn.



Derivatives of Modular Forms

Eisenstein series E2 is not a modular form:

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ) +

12

2πi
c(cτ + d),

(
a b
c d

)
∈ SL2(Z).

This leads to quasimodular forms and derivatives of modular
forms. Differentiate both sides of

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ),

one gets

f ′
(
aτ + b

cτ + d

)
= (cτ + d)k+2f ′(τ) + kc(cτ + d)k+1f(τ),

i.e., f ′(τ) is no longer a modular form. It is close to being a
modular form of weight k + 2.



Ramanujan Identities

In a famous paper published in 1916, Ramanujan proved the

following identities:

q
d

dq
E2 =

1

12
(E2

2 − E4),

q
d

dq
E4 =

1

3
(E2E4 − E6),

q
d

dq
E6 =

1

2
(E2E6 − E2

4).

Notes. 1. These were actually proved first by Eisenstein.

2. D = q ddq = 1
2πi

d
dτ .



Serre Derivation

Based on Ramanujan identities, Serre introduced a differential

operator acting on the space of modular forms:

∇ : Mk →Mk+2, ∇f = q
d

dq
f −

k

12
E2 · f.

If one rewrite a modular form f(τ) of weight k as a differential

form f(τ)(dτ)k, then it is holomorphic section of a holomorphic

line bundle on the moduli space of elliptic curves. The Poincaré

metric induces a Hermitian metric on this line bundle, then the

Serre differential is just the Chern connection for this metric.



Rankin-Cohen Brackets and Rankin-Cohen ALgebras

In 1956, Rankin gave a general description of the differential
operators which send modular forms to modular forms.

A very interesting special case is certain bilinear bracket operators
on M∗ introduced by Cohen in 1977.

In 1994, Zagier studied the algebraic relations among the Rankin-
Cohen brackets and introduced a notion of Rankin-Cohen alge-
bra.

In the last section of his paper, Zagier raised the question of
finding Rankin-Cohen algebras in other areas in mathematics. He
mentioned invariant theory, Moyal product and vertex operator
algebra.



Rankin-Cohen Brackets

Let f ∈Mk and g ∈Ml, the n-th Rankin-Cohen bracket of f and

g is defined by:

[f, g]n =
∑

r+s=n

(−1)r
(n+ k − 1

s

)(n+ l − 1

r

)
Drf ·Dsg.

For example,

[f, g]0 = fg,

[f, g]1 = k · f ·Dg − l ·Df · g.

One can check that [f, g]n ∈Mk+l+2n.



The Rankin-Cohen Algebra

The Rankin-Cohen brackets satisfies many algebraic identities,

e.g.,

[f, g]n = (−1)n[g, f ]n,

[[f, g]1, h]1 + [[g, h]1, f ]1 + [[h, f ]1, g]1 = 0,

[[f, g]0, h]1 + [[g, h]0, f ]1 + [[h, f ]0, g]1 = 0,

m[[f, g]1, h]0 + l[[g, h]1, f ]0 + k[[h, f ]1, g]0 = 0,

[[f, g]1, h]1 = [[g, h]0, f ]2 − [[h, f ]0, g]2 + [[g, h]2, f ]0 − [[h, f ]2, g]0,

etc., where f ∈Mk, g ∈Ml, h ∈Mm.

From these one can extract a notion of a Rankin-Cohen algebra.



Kuznetsov-Cohen Series

For f ∈Mk define a formal power series:

f̃(τ,X) =
∞∑
n=0

Dnf(τ)

(n+ k − 1)!
(2πiX)n.

This is called the Kuznetzov-Cohen series of f .

It satisfies the following transformation formula:

f̃

(
aτ + b

cτ + d
,

X

(cτ + d)2

)
= (cτ + d)kecX/(cτ+d)f̃(τ,X).



Generating Series of Rankin-Cohen Brackets

For f ∈Mk, g ∈Ml,

f̃(τ,−X)g̃(τ,X) =
∞∑
n=0

[f, g]n(τ)

(n+ k − 1)!(n+ l − 1)!
(2πiX)n,

This resembles Hirota bilinear derivatives:

f(x+ y)g(x− y) =
∞∑
n=0

1

n!
(Dn

xf · g)yn,

and so it suggests a connection with the theory of integrable

hierarchies.



From Modular Forms to Modular Pseudodifferential Operators

For f ∈ M2k, Cohen-Manin-Zagier associated a family of pseu-
dodifferential operator parameterized by κ:

Dκ[f ] =
∞∑
n=0

(−k
n

)(−k+κ−1
n

)
(−2k
n

) Dnf(τ)D−n−k.

For f ∈M2k, g ∈M2l, one has

Dκ[f ] · Dκ[g] =
∞∑
n=0

tκn(k, l)D[[f, g]n],

where the coefficients tκn(k, l) are given by:

tκn(k, l) =
1(−2l
n

) ∑
r+s=n

(−k
r

)(−k−1+κ
r

)
(−2k
r

)
(
n+k+l−κ

s

)(
n+k+l−1

s

)
(

(2n+2k+2l−2
s

) .



Multiplications on M∗ Defined by Rankin-Cohen Brackets

Since the multiplication on the space of pseudodifferential forms

is associative, it follows the following multiplication defined on

M∗ is associative:

f ∗κ g =
∞∑
n=0

tκn(k, l)[f, g]n, (f ∈M2k, g ∈M2l).

By taking κ = 1
2 or 3

2, one can see that

f ∗~ g =
∞∑
n=0

~n[f, g]n

is associative. This is called the Eholzer product.



Classical Invariant Theory

Classical invariant theory studies polynomials which are fixed by

certain group action.

A typical example is binary invariants, which are polynomials

in two variables invariant under the action of a subgroup Γ ⊂
SL2(C).

In other word f(x, y) ∈ C[x, y]Γ iff

f(ax+ by, cx+ dy) = f(x, y),

(
a b
c d

)
∈ Γ.



The Ring of Invariants

It is clear that C[x, y]Γ is a commutative ring, and can be decom-

posed into subspaces consisting of homogeneous polynomials:

C[x, y]Γ =
⊕
n≥0

C[x, y]Γn.

For example, for

Γ =

{(
e2πik/n 0

0 e−2πik/n

)
0 ≤ k < n

}

C[x, y]Γ = C[u = xn, v = xy,w = yn] = C[u, v, w]/(uw − vn).



Transvectants

The m-th transvectant of two functions F (x, y) and G(x, y) is

the function:

(F,G)(m) =
∑

i+j=m

(−1)i
(m
i

) ∂mF
∂xj∂yi

∂mG

∂xi∂yj
.

This defines an operation: C[x, y]Γk × C[x, y]Γl → C[x, y]Γk+l−2m.



Cayley’s Ω Process

Cayley’s Ω operator in two variables is

Ω =

∣∣∣∣∣∣
∂
∂x1

∂
∂y1

∂
∂x1

∂
∂y1

∣∣∣∣∣∣ =
∂

∂x1

∂

∂y2
−

∂

∂y1

∂

∂x2
.

Its action on F (x, y), G(x, y) is given by:

Ω(F (x1, y1)G(x2, y2))

=
∂F (x1, y1)

∂x1
·
∂G(x2, y2)

∂y2
−
∂F (x1, y1)

∂y1
·
∂G(x2, y2)

∂x2
.

The m-th transvectant is given by taking the Ω process m times:

(F,G)(m) = Ωm(F (x1, y1)G(x2, y2))|x1=x2=x,y1=y2=y.



Moyal ∗-Product

The Moyal product is defined as follows:

F ∗~ G =
∞∑

m=0

~m

m!
(F,G)(m)

= exp(~Ω)(F (x1, y1)G(x2, y2))|x1=x2=x,y1=y2=y.

The Moyal ∗-product is associative. Indeed,

(F ∗~ G) ∗~H
= exp(~Ω12 + Ω13 + Ω23)(F (x1, y1)G(x2, y2)H(x3, y3))|xi=x,yi=y,

F ∗~ (G ∗~H)

= exp(~Ω12 + Ω13 + Ω23)(F (x1, y1)G(x2, y2)H(x3, y3))|xi=x,yi=y,

where Ωij = ∂
∂xi

∂
∂yj
− ∂
∂xj

∂
∂yi

.



Modular Forms as Homogeneous Functions of Two Variables

Modular forms f ∈ M2k of weight 2k are in one-to-one corre-

spondence with homogeneous functions of weight −2k:

F (v, u) = u−2kf(
v

u
), f(τ) = F (τ,1).

Using this correspondence, one can understand modular forms

as functions on the following space

B = {(v, u) ∈ C | Im(
v

u
) > 0}.

On this space we consider the following action of SL2(Z):(
a b
c d

)
· (v, u) = (av + bu, cv + du).



Modular Forms as Invariants of SL2(Z) in Two Variables

So modular forms of weight 2k correspond to F (v, u) such that

F (av + bu, cv + du) = F (v, u), F (λv, λu) = λ−2kF (v, u).

In other words, modular forms should be understood as invariants

of degree −2k on the space B. This subspace of C2 is invariant

under the action of SL2(Z) which is a subgroup of the linear

symplectic group that preserves the symplectic structure on C2.



The Rankin-Cohen Brackets as Transvectants

Denote the map that sends f(τ) to F (v, u) by H(f), then it is

not hard to see that

H([f, g]m) =
1

m!
(H(f), H(g))(m).

As a corollary, the Eholzer product becomes the Moyal product:

H(f ∗~ g) = H(f) ∗~H(g).

The associativity of the Eholzer product is then automatic.



From Modular Forms to Polynomials in Two Variables

Recall M∗ = C[E4, E6], i.e., every modular form can be written

as a polynomial in E4 and E6 in a unique way.

It follows that if f ∈ M2k and g ∈ M2l, then there are weighted

homogeneous polynomials P and Q of degree 2k and 2l respec-

tively, such that

f = P (E4, E6), g = Q(E4, E6),

where degE4 = 4, degE6 = 6. Then for each n ≥ 0, there is a

weighted homogeneous polynomial Rn(x, y) of degree 2k+2l+2n

such that [f, g]n = Rn(E4, E6).



Moyal Product on the Plane Induced by Rankin-Cohen Brackets

It follows that the Rankin-Cohen brackets and the product ∗~
induce bracket operations and a star-product on C[x, y].

In other words, there is an isomorphism G : M∗ → C[x, y], P (E4, E6) 7→
P (x, y), such that

[P,Q]n = G([G−1(P ), G−1(Q)]),

P ∗~ Q = G(G−1(P ) ∗~ G−1(Q)).

For example,

x ∗~ y = xy + 2(y2 − x3)~ +
245

18
(y2 − x3)x~3 +

175

24
(x3 − y2)y~4

+
154

3
(y2 − x3)x2~5 +

119

3
(x3 − y2)xy~6

+ (y2 − x3)(
6125

24
x3 −

2645

24
y2)~7 +

1045

8
(x3 − y2)x2y~8 + · · ·



More Examples of Moyal Product Induced by Rankin-Cohen

Brackets

x ∗~ x = x2 +
25

9
(x3 − y2)~2 +

175

18
(x3 − y2)x~4 +

70

3
(x3 − y2)x2~6

+ (x3 − y2)(
40975

432
x6 −

21175

432
y2)~8 + · · · ,

y ∗~ y = y2 +
49

4
(y2 − x3)x~2 +

147

2
(y2 − x3)x2~4

+ (y2 − x3)(
290521

576
x3 −

135289

576
y2)~6

+ (y2 − x3)(
2277275

576
x3 −

1844843

576
y2)x~8 + · · ·



Poisson Structure on the Plane Induced by Rankin-Cohen
Brackets

We are interested in the Poisson structure for this star product.
By Ramanujan’s identities, it is easy to see that

[E4, E6]1 = 2E2
6 − 2E3

4 = 2 · 1728∆,

where ∆ = q
∏∞
n=1(1− qn)24 is called the discriminant.

It follows that the induced Poisson bracket on C2 is given by:

[x, y] = 2y2 − 2x3.

The corresponding bivector field is 2(y2 − x3) ∂
∂x ∧

∂
∂y.

This is of type A2 in the classification of Poisson structures on
the plane by Arnold.



Symplectic Structure on the Plane Induced by Rankin-Cohen

Brackets

The above Poisson structure corresponds to the following sym-

plectic structure:

ω =
1

2(y2 − x3)
dx ∧ dy,

which is singular along the curve

y2 = x3.

This is an algebraic curve with a cusp singularity.

The singularity is of type A2.



Hamiltonian Vector Field Corresponding to Serre Derivation

Recall the Serre derivation ∇ acts on Mk by ∇ = ∂
∂τ −

k
12E2(τ)·.

And so by Ramanujan identities again

∇E4 = −
1

3
E6, ∇E6 = −

1

2
E2

4.

So it corresponds to the following vector field on C2:

X∇ = −
1

3
y
∂

∂x
−

1

2
x2 ∂

∂y
,

This vector field is “Hamiltonian”:

ι(X∇)ω = −
y

6(y2 − x3)
dy +

x2

4(y2 − x3)
dx = −d

log(y2 − x3)

12
.



Hamiltonian System Associated with the Serre Derivation

Consider the following system associated with the Serre deriva-
tion:

d

dt
x(t) = −

1

3
y(t),

d

dt
y(t) = −

1

2
x(t)2.

It has the following solution

x(t) = 36P(t+ c1; 0, g3),

y(t) = −108P ′(t+ c1; 0, g3).

Recall the Weierstrass P-function P(t; g2, g3) satisfies the differ-
ential equation:

P ′(t; g2, g3)2 = 4P(t; g2, g3)3 − g2P(t; g2, g3)− g3.

So the solution curves are given by the algebraic equations:

y(t)2 = x(t)3 − 1082g3.



Moyal Bracket on the Plane Induced by Rankin-Cohen Brackets

The Moyal bracket is defined by the star product:

{P,Q}~ :=
P ∗~ Q−Q ∗~ P

2~
.

This defines a deformation of the Poisson bracket above:

{x, y}~ = 2(y2 − x3) +
245

18
(y2 − x3)x~2 +

154

3
(y2 − x3)x2~4

+ (y2 − x3)(
6125

24
x3 −

2645

24
y2)~6 + · · ·



Deformation of the Vector Field Corresponding to Serre

Derivation

Recall the vector field corresponding to Serre derivation

X∇ = −
1

3
y
∂

∂x
−

1

2
x2 ∂

∂y
,

is Hamiltonian with Hamiltonian H = −log(y2−x3)
12 :

With the same Hamiltonian, the Hamiltonian vector field with

respect to {·, ·}~ is

X∇~ = (1 +
245

36
x~2 +

154

6
x2~4 + (

6125

48
x3 −

2645

48
y2)~6 + · · · )

·(−
1

3
y
∂

∂x
−

1

2
x2 ∂

∂y
).



Summary and Outlook

E4 and E6 can be understood as parameters for family of elliptic

curves in Weierstrass form:

Y 2 = 4X3 − 60E4X − 140E6.

The theory of modular forms leads to the constructions of some

nice geometric structures familiar in mathematical physics on the

space of (E4, E6):

1. A Poisson structure

2. A star-product that induces a deformation of the Poisson

structure

3. A Hamiltonian vector field together with a deformation



Summary and Outlook

In the above we have seen the algebraic curve y2 = x3 natu-

rally appears as the singular locus of the Poisson structure on

the (x, y)-plane. This curve appears also in another setting: E-

mergent geometry of spectral curve for Witten-Kontsevich tau-

function.

We will combine the (x, y)-plane and the (X,Y )-plane and define

a Poisson structure again by considerations from invariant theory.

We will also apply the same construction to the invariant theory

of binary polyhedral groups.



An example of emergent phenomenon: Witten

Conjecture/Kontsevich Theorem

For topological 2D gravity, the n-point correlators are defined by

〈τm1 · · · τmn〉g :=
∫
Mg,n

ψ
m1
1 · · ·ψmn

n .

Fg(t) =
∑
n≥0

1

n!

∑
a1,...,an≥0

ta1 · · · tan〈τa1, · · · , τan〉g.

F (t;λ) =
∑
g≥0

λ2g−2Fg(t).

ZWK = expF (t;λ).

This is called the Witten-Kontsevich tau-function .



Special deformation of the Airy curve

Theorem (Z.) Consider the following series (tk = (2k + 1)!!uk):

Y = f −
∑
n≥0

(2n+ 1)unX
n−1/2 −

∑
n≥0

∂F0

∂un
(u) ·X−n−3/2.

Then one has

Y 2 =X

(
1−

∑
n≥1

(2n+ 1)unX
n−1

)2

−2u0

(
1−

∑
n≥1

(2n+ 1)unX
n−1

)

+2
∑
n≥0

∑
k≥n+2

(2k + 1)uk ·
∂F0

∂un
·Xk−n−2.



Emergence of the spectral curve for topological 2D gravity

Consider the Puiseux series:

Y = X1/2 −
u0

X1/2
−
∑
n≥0

∂F0

∂un
(u0,0, . . . ) ·X−n−3/2,

then one has

X = Y 2 + 2u0.

When u0 = 0, this gives us the Airy curve:

Y 2 = X.

It is the spectral curve of the topological 2D gravity.

This is an emergent phenomenon : You have to go through the

infinite-dimensional big phase space to see the spectral curve.



Examples of the special deformation

When tj = 0 for j ≥ 3, the curve is deformed to:

Y 2 = −2u0(1− 3u1) + 10u2
∂F0

∂u0
(u0, u1, u2)

+ ((1− 3u1)2 + 10u0u2)X

− 10u2(1− 3u1)X2 + 25u2
2X

3.

When t1 = 1 i.e., u1 = 1/3,

Y 2 = 10u2
∂F0

∂u0
(u0,1/3, u2) + 10u0u2 ·X + 25u2

2 ·X
3.

The spectral curve undergoes a phase change from a rational

curve to a family of elliptic curves in the (X,Y )-plane parame-

terized by (u0, u2)!



Elliptic functions

An elliptic function is a meromorphic function f with two periods

u and v:

f(z +mu+ nv;u, v) = f(z;u, v), m, n ∈ Z,

where τ = v
u lies in the upper half plane H.

One can consider a Z2-action:

(m,n) · (z;u, v) = (z +mu+ nv;u, v),

then elliptic functions are invariant under this action.



Derivatives of elliptic functions

Taking ∂z, ∂u and ∂v respectively,

∂zf(z +mu+ nv;u, v) = ∂zf(z;u, v),

∂uf(z +mu+ nv;u, v) +m∂zf(z +mu+ nv;u, v) = ∂uf(z;u, v),

∂vf(z +mu+ nv;u, v) + n∂zf(z +mu+ nv;u, v) = ∂vf(z;u, v).

Therefore, given an elliptic function f , ∂zf is still an elliptic

function, but it is not the case for ∂uf and ∂vf in general.



A Poisson bracket for elliptic functions

We are in the same situation as in the case of modular forms:
The space of elliptic functions may not be close under derivatives,
but it may be close under some bracket operation.

For two elliptic functions f and g with periods u and v, one can
check that

{f, g} =
2πi

u

∂f

∂v

∂g

∂z
−
∂f

∂z

2πi

u

∂g

∂v
is an elliptic function with period u, v.

In other words, we consider the Poisson structure on the space
of (z, u, v) defined by

2πi

u

∂

∂v
∧
∂

∂z
,

and consider its restriction to the space of elliptic functions.



Weierstrass function

Weierstrass function with period u and v are defined by:

P(z; τ) =
1

z2
+

∑
(m,n)∈Z2−{(0,0)}

(
1

(z +mu+ nv)2
−

1

(mu+ nv)2

)
,

Weierstrass P-function has the following Laurent expansion at

z = 0:

P(z; τ) =
1

z2
+
∞∑
n=1

(2n+ 1)e2n+2(u, v)z2n,

where the coefficients e2k(τ) are the Eisenstein series:

e2k(u, v) =
∑
m,n

′ 1

(mu+ nv)2k
.



Weierstrass function and its derivatives

By a result of Eisenstein,

2πi

u

∂e2

∂v
= 5e4 − e2

2,

2πi

u

∂e4

∂v
= 14e6 − 4e2e4,

2πi

u

∂e6

∂v
=

60

7
e2

4 − 6e2e6,

2πi

u

∂P
∂v

= E1P ′+ 2P2 − 2e2P − 20e4,

2πi

u

∂P ′

∂v
= E1(6P2 − 30e4) + 3PP ′ − 3e2P ′.

where

E1 =
1

z
−
∞∑
n=1

e2n+2(u, v)z2n+1.



Poisson bracket of Weierstrass function and its z-derivative

One finds:

{P,P ′} = (420e6 − 120e2e4)P + 600e2
4 − 420e2e6.

Recall

(P ′)2 = 4P3 − 60e4P − 140e6,

we can rewrite the above Poisson bracket in the following form:

{P,P ′} =
1

2

2πi

u

∂

∂v
(Y 2 − 4X3 + 60e4X + 140e6)|X=P,Y=P ′.



Induced Poisson bracket

Similar to the case of modular forms, we get an induced Poisson

structure on the space of (X,Y, u, v) defined by:

1

2

2πi

u

∂

∂v
(Y 2 − 4X3 + 60e4X + 140e6) ·

∂

∂X
∧

∂

∂Y
.

It is easy to see that f = Y 2−4X3 + 60e4X + 140e6 is a Casimir

function for this Poisson structure, i.e. {f, g} = 0 for all g.



Future directions

Recall Dubrovin has defined a structure of twisted Frobenius

manifold on the locus

f = 0

In our future investigations we will examine how these two kinds

of structures interact with each other.

Another direction of research is to understand these structures

from the point of view of emergent geometry, i.e., to see their

relationship with GRomov-Witten theory.



Poisson structures arising from classical invariant theory

The above discussions in the settings of modular forms and el-

liptic functions motivate us to carry out the same constructions

in the setting of polynomial invariants.

A particularly interesting case is the binary polyhedral groups.

They are related to the Platonic solids and simple Lie algebras

of type ADE.



Induced Poisson bracket and McKay correspondence

Let Γ ⊂ SU(2) be a finite subgroup. Then

C[x, y]Γ = C[X,Y, Z]/〈F (X,Y, Z)〉,
where X,Y, Z are homogeneous invariant polynomials in x, y, and
F (X,Y, Z) is a weighted homogeneous polynomial in X,Y, Z.

For f, g ∈ C[x, y],

{f, g} =
∂f

∂x

∂g

∂y
−
∂f

∂y

∂g

∂x
∈ C[x, y]Γ,

so by computing {X,Y }, {Y, Z}, {Z,X}, one defines a Poisson
structure on the space of (X,Y, Z), such that

{X,Y } =
∂F

∂Z
, {Y, Z} =

∂F

∂X
, {Z,X} =

∂F

∂Y
,

and F is a Casimir.



Type A

The group is the cyclic group of order n, generated by(
e2πi/n 0

0 e−2πi/n

)
The invariants are generated by

X = xn, Y = xy, Z = yn.

We have

{X,Y } = nX, {Y, Z} = nZ {Z,X} = −n2Y n−1.

We have F = n(XZ − Y n) as the Casimir. One can check that

XZ − Y n = 0.



Type D

The group is the binary dihedral group of order 4n, generated by

g1 =

(
e2πi/(2n) 0

0 e−2πi/(2n)

)
, g2 =

(
0 i
i 0

)
When n is odd, the invariants are generated by

X = (xy)2, Y = x2n − y2n, Z = xy(xn − yn)2.

{X,Y } = −n(8X(n+1)/2 + 4Z),

{Y, Z} = −n(4(n+ 1)X(n−1)/2Z − 2Y 2),

{Z,X} = 4nXY.

We have F = 2n(XY 2 − Z2 − 4X(n+1)/2Z) as the Casimir. One
has:

XY 2 − Z2 − 4X(n+1)/2Z = 0.



Type D

When n is even, the invariants are generated by

X = x2y2, Y = (xn − yn)2, Z = xy(x2n − y2n).

We have

{X,Y } = −4nZ,

{Y, Z} = n(4(n+ 2)Xn/2Y + 2Y 2),

{Z,X} = 4n(XY + 2Xn/2+1).

We have F = 2n(XY 2−Z2 + 4Xn/2+1Y ) as the Casimir, and we

have

XY 2 − Z2 + 4Xn/2+1Y = 0.



Type E6

Γ is the binary tetrahedral group of order 24, generated by

g1 =

(
e2πi/4 0

0 e−2πi/4

)
, g2 =

(
0 i
i 0

)
, g3 =

1

1− i

(
1 i
1 −i

)
The invariants are generated by

X = xy(x4 − y4),

Y = x8 + 14x4y4 + y8,

Z = x12 − 33x8y4 − 33x4y8 + y12.

{X,Y } = −8Z, {Y, Z} = 12y2, {Z,X} = −1728x3.

We have F = −4(108X4−Y 3 +Z2) as the Casimir, and we have

108X4 − Y 3 + Z2 = 0.



Type E7

Γ is the binary octahedral group of order 48, generated by

g1 =

(
e2πi/8 0

0 e−2πi/8

)
, g2 =

(
0 i
i 0

)
, g3 =

1

1− i

(
1 i
1 −i

)

X = x2y2(x4 − y4)2,

Y = x8 + 14x4y4 + y8,

Z = xy(x16 − 34x12y8 + 34x8y12 − y16).

We have

{X,Y } = −16Z, {Y, Z} = 8Y 4 − 2592X3, {Z,X} = 24XY 2.

We have F = −8(81X4−XY 4 +Z2) as the Casimir, and we have

81X4 −XY 4 + Z2 = 0.



Type E8

Γ is the binary icosahedral group of order 120, generated by

g1 =

(
ξ10 0
0 ξ−1

10

)
, g2 =

(
0 i
i 0

)
, g3 =

1√
5

(
ξ5 − ξ4

5 ξ2
5 − ξ

3
5

ξ2
5 − ξ

3
5 −ξ5 + ξ4

5

)
where ξn = e2πi/n. The invariants are generated by

X = xy(x10 + 11x5y5 − y10),

Y = −(x20 + y20) + 228(x15y5 − x5y15)− 494x10y10,

Z = x30 + y30 + 522(x25y5 − x5y25)− 10005(x20y10 + x10y20).

{X,Y } = 20Z, {Y, Z} = −86400X4, {Z,X} = 30Y 2.

We have F = −10(1728X5 − Y 3 − Z2) as the Casimir, and we
have

1728X5 − Y 3 − Z2 = 0.



Future study of the induced Poisson bracket

It turns out that a natural deformation of the above Poisson

structure has been introduced in the setting of transversal Pois-

son structure of nilpotent orbits.

The parameter space is the parameter space of the universal

unfolding of the corresponding simple singularity, hence it has a

natural structure of a Frobenius manifold and it is related to the

FJRW theory.

Again we are facing with the problems of investigating the inter-

actions between the Poisson structure and Frobenius manifold

structure, and understanding them from the point of view of

emergent geometry.



A Conjecture

Since the Poisson structures we have considered are induced

from a symplectic structure on C2, the Moyal products induce

deformation quantizations as in the case of modular forms.

We conjecture all such deformation quantizations coincide with

the deformation quantizations constructed by Kontsevich.



Thank you very much for your

attentions!


