Main  Participants  Program  Location  Photos  Registration  
Program (225 Kb) Courses:E. Balzin. Families of categories in geometry, algebra, and homotopy theory. S. Barannikov. Noncommutative Hodge structures, Batalin Vilkovisky geometry and mirror symmetry. A. Efimov. Introduction to the category theory. T. Milanov. Lecture 1: Frobenius manifolds in singularity theory;Lecture 2: Mirror symmetry for orbifold quotients of the Fermat type CalabiYau hypersurfaces; Lecture 3: Analytic continuation of GromovWitten invariants. A. Mironov. Integrable systems and algebraic geometry. T. Panov. Geometry and topology of toric varieties. V. Przyjalkowski. Weighted complete intersections. A. Takahashi. Singularities and Mirror Symmetry. A. Sheshmani. Enumerative geometry of CalabiYau manifolds: GromovWitten and DonaldsonThomas theories in dimensions 2,3,4. K. Shramov. SeveriBrauer varieties and their automorphisms. A. Szenes. Localization techniques and the structure of the cohomology ring of the moduli spaces of Higgs bundles. Short talks:S. Abramyan. Higher Whitehead products in toric topology. A. Basalaev. Mirror symmetry for smooth toric varieties and Saito canonical filtration. I. Fedorov. How to compute the ring structure on the cohomology of Joyce's $G_2$ manifolds via intersections of embedded cycles. A. Kazhymurat. Geometry of Lagrangian submanifolds in CP^2. N. Kirilova. On Nonuniqueness of Cycles in Some Nonlinear Dynamical Systems. V. Kulikov. TBA. A. Lushin. Toric Cycles in the Complement to a Complex Curve in C^2. G. Papayanov. Coherence of higher direct images for superconnections. M. Ovcharenko. On Hamiltonianminimal isotropic homogeneous tori in C^n and CP^n.


© Институт математики им. С. Л. Соболева, 2018  