Lecture 10. The Bin Packing Problem

The one dimensional bin packing problem is defined as follows. Given a set $L = \{1, \ldots, n\}$ of items and theirs weights $w_i \in (0,1), i \in L$. We wish to partition the set L into minimal number m of subsets B_1, B_2, \ldots, B_m in such a way that

$$\sum_{i \in B_j} w_i \leq 1, \ 1 \leq j \leq m.$$

The sets B_j we will call bins.

In other words, we wish to pack all items in a minimal number of bins.

It is NP-hard problem in the strong sense.
Mathematical Model

Decision variables:

\[y_j = \begin{cases} 1 & \text{if bin } j \text{ is used} \\ 0 & \text{otherwise} \end{cases}; \quad x_{ij} = \begin{cases} 1 & \text{if item } i \text{ is in bin } j \\ 0 & \text{otherwise} \end{cases} \]

\[
\min \sum_{j=1}^{n} y_j
\]

s.t.

\[
\sum_{i=1}^{n} w_i x_{ij} \leq y_j, \quad j = 1, \ldots, n;
\]

\[
\sum_{j=1}^{n} x_{ij} = 1, \quad i = 1, \ldots, n;
\]

\[
y_i, x_{ij} \in \{0,1\}, \quad i, j = 1, \ldots, n.
\]

Can we find the optimal solution for the linear programming relaxation in polynomial time?
Bad News

- There is much symmetry in the model.
- The problem is hard to approximate.

Theorem 1. The existence of a polynomial time \(\left(\frac{3}{2} - \varepsilon \right) \)-approximation algorithm for any positive \(\varepsilon \) implies \(P = NP \).

Proof. Let us consider the following NP-complete problem. Given \(n \) positive numbers \(a_1, \ldots, a_n \). Is it possible to partition this set into two subsets \(A_1, A_2 \) in such a way that \(\sum_{i \in A_1} a_i = \sum_{i \in A_2} a_i \) ?

We put \(C = \frac{1}{2} \sum_{i=1}^{n} a_i \), \(w_i = \frac{a_i}{c} \), \(i = 1, \ldots, n \), and apply our \(\left(\frac{3}{2} - \varepsilon \right) \)-approximation algorithm. If we get 2 bins, then answer is Yes, otherwise No. It is **exact** answer! ■
Strong Heuristic (FFD)

Rank the items by the weights:

\[w_1 \geq w_2 \geq \ldots \geq w_n \]

and apply the First Fit strategy:

- put the first item in the first bin;
- at the step \(k \), we try to put item \(k \) into the used bins and, if it is not possible, we put item \(k \) into a new bin.

Theorem 2. \(FFD(L) \leq \frac{11}{9} \OPT(L) + 4 \) for all \(L \) and there exist some instances for the bin packing problem with

\[FFD(L) \geq \frac{11}{9} \OPT(L). \]
Hard Example

\[L = \{1, \ldots, 30m\} \]

\[
\begin{align*}
 w_i = & \begin{cases}
 \frac{1}{2} + \epsilon, & 1 \leq i \leq 6m \\
 \frac{1}{4} + 2\epsilon, & 6m < i \leq 12m \\
 \frac{1}{4} + \epsilon, & 12m < i \leq 18m \\
 \frac{1}{4} - 2\epsilon, & 18m < i \leq 30m
 \end{cases}
\end{align*}
\]

\[\text{OPT}(L) = 9m \]

\[FFD(L) = 11m \]
Huge Reformulation

Given
$L = \{1, \ldots, n\}$ is the set of items;
$w_i > 0$ is the weight of item i;
$n_i > 0$, integer, is the number of identical items i
a_{ij} is the number of identical items i in packing pattern j.

Find
a partition of all items into a minimal number of bins.

Variables:
$x_j \geq 0$, integer, is the number of bins for the pattern j

$$
\begin{align*}
\min & \sum_{j \in J} x_j \\
\text{s.t.} & \sum_{j \in J} a_{ij}x_j \geq n_i, \ i \in L; \\
& x_j \geq 0, \text{ integer, } j \in J.
\end{align*}
$$

J is the set of all possible patterns.
LP-Based Heuristic

Solve the linear programming relaxation

\[
\begin{align*}
\min & \quad \sum_{j \in J} x_j \\
\text{s.t.} & \quad \sum_{j \in J} a_{ij}x_j \geq n_i, \quad i \in L; \\
& \quad x_j \geq 0, \quad j \in J.
\end{align*}
\]

Put \(x_j = [x_j^*], \quad j \in J \). It is a feasible solution with deviation from the optimum at most

\[
\varepsilon = \frac{\sum_{j \in J} ([x_j^*] - x_j^*)}{\sum_{j \in J} x_j^*}
\]

where \(x_j^* \) is the optimal solution for the LP model.

Can we solve LP?
The Column Generation Method

Let us consider a subset $J' \subset J$ of patterns and assume that the following subproblem

$$\min \sum_{j \in J'} x_j$$

s.t.

$$\sum_{j \in J'} a_{ij} x_j \geq n_i, \quad i \in L;$$

$$x_j \geq 0, \quad j \in J';$$

has at least one feasible solution.

Denote by x_j^* the optimal solution to this subproblem.
The Dual Problem

\[
\begin{align*}
\max & \sum_{i \in L} n_i \lambda_i \\
\sum_{i \in L} a_{ij} \lambda_i & \leq 1, \ j \in J'; \\
\lambda_i & \geq 0, \ i \in L.
\end{align*}
\]

Denote by \(\lambda_i^* \geq 0 \) its optimal solution. If

\[
\sum_{i \in L} a_{ij} \lambda_i^* \leq 1, \ \text{for} \ j \in J \setminus J';
\]

then

\[
\bar{x}_j = \begin{cases}
 x_j^*, & j \in J' \\
 0, & j \in J \setminus J'
\end{cases}
\]

is the optimal solution for the LP problem.
How to Check (*)?

Let us consider the following knapsack problem:

\[\alpha = \max \sum_{i \in L} \lambda_i^* y_i \]

s.t. \[\sum_{i \in L} w_i y_i \leq 1; \] (capacity of bin)

\[y_i \geq 0, \text{ integer, } i \in L. \]

If \(\alpha \leq 1 \) then (*) is satisfied.

If \(\alpha > 1 \) then we have got a new pattern and include it in \(J' \).
The Framework of the Method

1. Select an initial subset $J' \subset J$.
2. Solve the subproblem for J' and its dual one, get x^*_j, λ^*_i.
3. Solve the knapsack problem for λ^* and compute α.
4. If $\alpha \leq 1$ then STOP.
5. Include new pattern j_0: $a_{ij_0} = y^*_i$, $i \in L$, into subset J' and goto 2.

Surprise: As a rule, solution $x_j = \lfloor x^*_j \rfloor$, $j \in J$ is optimal for the bin packing problem. If it is not true, we have at most one additional bin only!
Two-Dimensional Packing Problem

Given: \(n \) rectangles with size \(w_i \times l_i, \ i = 1, ..., n \).

Find: a packing of the rectangles into a rectangle area with minimal square.

Rotations are forbidden

\[L \times M \rightarrow \min \]

It is guillotine solution.
The Strip Packing Problem

Дано: \(n \) rectangles with size \(w_i \times l_i, \ i \in L \), and large strip with width \(W \).

Find: a packing of rectangles into the strip with minimal length.

For \(l_i = 1 \) we have one-dimentional bin packing problem (NP-hard)

Hometask. Design a linear integer programming model for the strip packing problem (with and without 90° rotations).
The Two-Dimensional Knapsack Problem

Given: \(n \) rectangles with size \(w_i \times l_i \), profit \(c_i \) for each rectangle, and the size of a vehicle \(W \times L \).

Find: a subset of rectangles with maximal total profit which can be packed into the vehicle.

For \(l_i = L \), we have the classical knapsack problem.

Hometask. Design a linear integer programming model for the two-dimensional knapsack problem.
The Two-Dimensional Bin Packing Problem

Given: n rectangles with size $w_i \times l_i$ and the size of a vehicle $W \times L$.

Find: a packing all rectangles into the minimal number of vehicles.

Hometask. Design LP-based heuristic for the two-dimensional bin packing problem.