Discrete location problems Benchmark library
 Competitive facility location problem Main page (Rus | Eng)   Competitive facility location problem

Test instances. Class A

For this class of instances the set of candidate sites and the set of clients are equal to the set of vertices of some random graph. Instances are generated as follows: m numbered points are randomly thrown on the unit square. Coordinates of each point are realizations of the uniformly distributed in the [0,1] random variable.The probability of two points to be connected with edge is decreasing as like as  exp(d 2), where d is euclidean distance between the points. The length of the new edge is equal to d. The distance between connected components are assumed to be inifinite.
For each pair of vertices i, j the value rij is assumed to be equal to the number of vertices, which are closer (in the sence of graph distances) to vertex j than vertex i or which are located at the same distance from j and their number is smaller than i. For given j values rij are pairwise different integer numbers from 0 to  m 1.
fi  = 40;
gi  = random integer from 25 to 35;
pij = bj, if rij  < Rj  and 0 otherwise, where bj  = random integer from 10 to 20, Rj = random integer from 1 to m.
Input data format:
each string contains only one value;
parameters are given in the following order:
m, n, (rij) line by line[1], pij line by line, fi , gi.
[1] for example, elements of 2x2-matrix A will be ordered as follows: a11, a12, a21, a22.
Instances' codes have the following meaning: a20-01 instance from class A, m = n = 20, unique number 01.

 Instance code UB VL* x* a20-01 97 62 12 16 17 18 a20-02 112 53 2 6 8 11 a20-03 87 61 2 5 9 11 14 19 a20-04 144 35 2 5 9 14 19 a20-05 93 58 2 6 12 a20-06 52 51 5 8 13 18 a20-07 65 10 4 19 20 a20-08 73 38 2 5 9 12 13 a20-09 50 16 4 17 a20-10 83 29 3 4 5 6 14 17 a20-11 84 42 8 10 17 20 a20-12 59 22 2 9 14 19 a20-13 75 25 14 15 16 a20-14 124 51 10 18 20 a20-15 97 40 3 15 16 17 a20-16 74 27 1 13 20 a20-17 81 42 3 4 5 13 18 a20-18 96 50 9 10 12 a20-19 123 46 14 15 19 a20-20 74 32 10 11 15 16 20 All instances from a20

 Instance code UB VL* x* a30-01 130 67 4 16 17 18 21 a30-02 110 44 1 4 21 24 25 a30-03 130 74 5 9 12 19 22 24 29 30 a30-04 101 67 2 3 4 8 12 15 20 23 30 a30-05 179 115 4 11 13 20 25 a30-06 146 41 3 9 20 29 a30-07 149 84 8 9 12 17 28 a30-08 144 56 7 8 12 13 15 18 23 a30-09 142 83 1 4 10 12 15 19 27 29 a30-10 165 67 4 7 9 16 28 30 a30-11 82 28 4 6 8 14 17 a30-12 147 43 8 15 18 a30-13 103 53 5 9 12 19 29 a30-14 190 55 14 17 20 27 30 a30-15 176 61 3 4 11 15 19 23 27 a30-16 159 93 2 5 10 14 17 22 a30-17 165 90 4 7 12 23 26 a30-18 151 82 2 6 9 11 16 19 a30-19 131 46 7 9 12 13 18 a30-20 152 98 3 7 17 19 23 24

 Instance code UB VLrecord xrecord a40-01 137 62 x* a40-02 212 135 x* a40-03 198 81 x* a40-04 156 96 x* a40-05 212 97 x* a40-06 189 81 x* a40-07 241 96 x* a40-08 160 125 x* a40-09 194 83 x* a40-10 190 107 x* a40-11 192 101 x* a40-12 144 57 x* a40-13 222 163 x* a40-14 246 67 x* a40-15 223 100 x* a40-16 188 77 x* a40-17 218 136 x* a40-18 196 131 x* a40-19 249 112 x* a40-20 207 54 x*

 Instance code UB VLrecord xrecord a50-01 315 155 x* a50-02 270 138 x* a50-03 207 159 x* a50-04 239 81 x* a50-05 216 136 x* a50-06 236 117 x* a50-07 246 115 x* a50-08 206 92 x* a50-09 263 176 x* a50-10 241 143 x* a50-11 147 89 x* a50-12 259 144 x* a50-13 224 91 x* a50-14 218 96 x* a50-15 218 107 x* a50-16 231 93 x* a50-17 259 98 x* a50-18 295 164 x* a50-19 229 112 x* a50-20 238 123 x*